# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2019049

## A stochastic model of contagion with different individual types

 1 Underwood International College, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea 2 Department of Mathematics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Korea 3 Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea

* Corresponding author

Received  April 2018 Revised  December 2018 Published  May 2019

We develop a stochastic model of contagion with two individual types by extending an archetypal SIS CTMC model. Our results include the analyses of the contagion duration and the number of individual afflictions. Numerical applications with the minority and majority types are provided to consider various contagions.

Citation: Geofferey Jiyun Kim, Jerim Kim, Bara Kim. A stochastic model of contagion with different individual types. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019049
##### References:

show all references

##### References:
The probability density functions and the complementary cumulative distribution functions of the contagion duration in Application 1
The probability mass functions of the number of individual afflictions in Application 1
The probability density functions and the complementary cumulative distribution functions of the contagion duration in Application 2
The probability mass functions of the number of individual afflictions in Application 2
The probability density functions and the complementary cumulative distribution functions of the contagion duration in Application 3
The probability mass functions of the number of individual afflictions in Application 3
Parameter values for Application 1
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.2 0.1313 2.625 1.25 1 1 (ⅱ) 0.15 0.1313 2.625 2.25 1 1
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.2 0.1313 2.625 1.25 1 1 (ⅱ) 0.15 0.1313 2.625 2.25 1 1
Parameter values of Application 2
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.25 0.1313 2.625 0.25 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1.02 0.6
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.25 0.1313 2.625 0.25 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1.02 0.6
Parameter values of Application 3
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.5 0 0 0.5 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1 1 (iii) 0 0.2625 5.25 0 1 1
 $\beta_{11}$ $\beta_{12}$ $\beta_{21}$ $\beta_{22}$ $\gamma_{1}$ $\gamma_{2}$ (ⅰ) 0.5 0 0 0.5 1 1 (ⅱ) 0.25 0.1313 2.625 0.25 1 1 (iii) 0 0.2625 5.25 0 1 1
 [1] Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933 [2] Carlos M. Hernández-Suárez, Carlos Castillo-Chavez, Osval Montesinos López, Karla Hernández-Cuevas. An application of queuing theory to SIS and SEIS epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (4) : 809-823. doi: 10.3934/mbe.2010.7.809 [3] Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635 [4] Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653 [5] Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699 [6] Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445 [7] Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003 [8] Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175 [9] Lifeng Chen, Jifa Jiang. Stochastic epidemic models driven by stochastic algorithms with constant step. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 721-736. doi: 10.3934/dcdsb.2016.21.721 [10] Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127 [11] Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013 [12] Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291 [13] David Greenhalgh, Yanfeng Liang, Xuerong Mao. Demographic stochasticity in the SDE SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2859-2884. doi: 10.3934/dcdsb.2015.20.2859 [14] Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure & Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037 [15] Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841 [16] Fred Brauer. Some simple epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 1-15. doi: 10.3934/mbe.2006.3.1 [17] Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez. Discrete epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (1) : 1-15. doi: 10.3934/mbe.2010.7.1 [18] Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134 [19] Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1 [20] Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

2018 Impact Factor: 1.025

## Tools

Article outline

Figures and Tables