doi: 10.3934/jimo.2019048

Strategic inventory with competing suppliers

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, 611731, China

* Corresponding author: Xingzheng Ai

Received  March 2018 Revised  November 2018 Published  May 2019

This paper investigates the impact of competition and the strategic inventories on the performance of a supply chain comprising two competing suppliers and one retailer. Existing literature has shown that the retailer's optimal strategy in equilibrium is to carry inventories, and the suppliers are unable to prevent this. In contrast, our results show that the suppliers will prevent the retailer from carrying strategic inventories when the degree of competition between suppliers is high, and the retailer's carrying strategic inventory is not necessary to force suppliers to lower the future wholesale price. We also find the substitutable relationship between the effect of strategic inventories and the effect of competition. When the degree of competition increases, the suppliers are worse off but the retailer and the total supply chain are both better off when carrying strategic inventories. The retailer could introduce profit sharing contracts so as to encourage suppliers to support strategic inventories which enhance the entire performance of the supply chain.

Citation: Ganfu Wang, Xingzheng Ai, Chen Zheng, Li Zhong. Strategic inventory with competing suppliers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019048
References:
[1]

K. AnandR. Anupindi and Y. Bassok, Strategic inventories in vertical contracts, Management Science, 54 (2008), 1792-1804.

[2]

A. AryaH. Frimor and B. Mittendorf, Decentralized procurement in light of strategic inventories, Management Science, 61 (2015), 487-705. doi: 10.1287/mnsc.2014.1908.

[3]

A. Arya and B. Mittendorf, Managing strategic inventories via supplier-to-consumer rebates, Management Science, 59 (2013), 813-818.

[4]

G. P. Cachon, Supply chain coordination with contracts, A. G. des Kok, S. C. Graves. Eds, Supply chain management: design, coordination and operation, Esevier, Amsterdam, (2003), 223–339.

[5]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Science, 10 (1991), 271-358. doi: 10.1287/mksc.10.4.271.

[6]

Fr. Fitzroy and K. Kraft, Cooperation, productivity, and profit sharing, Quarterly Journal of Economics, 102 (1987), 23-35. doi: 10.2307/1884678.

[7]

O. ForosK. P. Hagen and H. J. Kind, Price-dependent profit sharing as a channel coordination device, Management Science, 55 (2009), 1280-1291.

[8]

R. HartwigK. InderfurthA. Sadrieh and G. Voigt, Strategic inventory and supply chain behavior, Production and Operations Management, 24 (2015), 1329-1345. doi: 10.1111/poms.12325.

[9]

B. Mantin and L. Jiang, Strategic inventories with quality deterioration, European Journal of Operational Research, 258 (2017), 155-164. doi: 10.1016/j.ejor.2016.08.062.

[10]

J. J. Rotmeberg and G. Saloner, Cyclical behavior of strategic inventories, Quart. J. Econom., 104 (1989), 73-97.

[11]

G. Saloner, The role of obsolescence and inventory costs in providing commitment, Internat. J. Indust. Organ., 4 (1986), 333-345. doi: 10.1016/0167-7187(86)90025-1.

[12]

W. ShangAY. Ha and S. Tong, Information sharing in a supply chain with a common retailer, Management Science, 62 (2016), 1-301. doi: 10.1287/mnsc.2014.2127.

show all references

References:
[1]

K. AnandR. Anupindi and Y. Bassok, Strategic inventories in vertical contracts, Management Science, 54 (2008), 1792-1804.

[2]

A. AryaH. Frimor and B. Mittendorf, Decentralized procurement in light of strategic inventories, Management Science, 61 (2015), 487-705. doi: 10.1287/mnsc.2014.1908.

[3]

A. Arya and B. Mittendorf, Managing strategic inventories via supplier-to-consumer rebates, Management Science, 59 (2013), 813-818.

[4]

G. P. Cachon, Supply chain coordination with contracts, A. G. des Kok, S. C. Graves. Eds, Supply chain management: design, coordination and operation, Esevier, Amsterdam, (2003), 223–339.

[5]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Science, 10 (1991), 271-358. doi: 10.1287/mksc.10.4.271.

[6]

Fr. Fitzroy and K. Kraft, Cooperation, productivity, and profit sharing, Quarterly Journal of Economics, 102 (1987), 23-35. doi: 10.2307/1884678.

[7]

O. ForosK. P. Hagen and H. J. Kind, Price-dependent profit sharing as a channel coordination device, Management Science, 55 (2009), 1280-1291.

[8]

R. HartwigK. InderfurthA. Sadrieh and G. Voigt, Strategic inventory and supply chain behavior, Production and Operations Management, 24 (2015), 1329-1345. doi: 10.1111/poms.12325.

[9]

B. Mantin and L. Jiang, Strategic inventories with quality deterioration, European Journal of Operational Research, 258 (2017), 155-164. doi: 10.1016/j.ejor.2016.08.062.

[10]

J. J. Rotmeberg and G. Saloner, Cyclical behavior of strategic inventories, Quart. J. Econom., 104 (1989), 73-97.

[11]

G. Saloner, The role of obsolescence and inventory costs in providing commitment, Internat. J. Indust. Organ., 4 (1986), 333-345. doi: 10.1016/0167-7187(86)90025-1.

[12]

W. ShangAY. Ha and S. Tong, Information sharing in a supply chain with a common retailer, Management Science, 62 (2016), 1-301. doi: 10.1287/mnsc.2014.2127.

Figure 1.  The relationship between $ r $ and $ h_{0} $ when $ a = 10 $
Figure 2.  The relationship between $ r $ and $ I^{i} $ when $ a = 10, h = 0.5 $
Figure 3.  the relationship $ h $ and $ r $ with $ a = 1 $
Figure 4.  Improvement performance
Figure 5.  the relationship between $ \beta $ and $ r $ with $ a = 10, h = 0.2 $
Table 1.  The Equilibrium Outcome
The Dynamic ContractThe Commitment Contract
$\left( {w_{1}^{\ast } , w_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(3-r)^{2}(3-2r-r^{2})-h(12-24r+9r^{2}+2r^{3}-r^{4})}{102-81r+9r^{2}+8r^{3}-2r^{4}}, \\ \dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{102-81r+9r^{2}+8r^{3}-2r^{4}}\end{array}} \right)$ $\left( {\dfrac{a(1-r)}{2-r}, \dfrac{a(1-r)}{2-r}} \right)$
$\left( {p_{1}^{\ast } , p_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{a(156-153r+21r^{2}+16r^{3}-4r^{4})-h(2-r)(6-9r+r^{3})}{2(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\ \dfrac{a(138-r(135-r(23+2r(7-2r)))) +h(2-r)(30-r(9+(3-r)r))}{2(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\dfrac{a}{2(2-r)}, \dfrac{a}{2(2-r)}} \right)$
$I^{{\rm \ast }}$ $\dfrac{a(30-39r+8r^{2}+r^{3})-h(2-r)^{2}(30-9r-3r^{2}+r^{3})}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}$ 0
$\left( {Q_{1}^{\ast } , Q_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(1-r)(39-r(9+2r))+h(2-r)(r(33+6r-4r^{2})-54)}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\\dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\begin{array}{l} \dfrac{a}{2(2-r)(1+r)}, \\ \dfrac{a}{2(2-r)(1+r)}\end{array}} \right)$
$\pi_{m}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}D-4ahE+4a^{2}K}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
$\pi_{b}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}A-2ahB+a^{2}C}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
The Dynamic ContractThe Commitment Contract
$\left( {w_{1}^{\ast } , w_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(3-r)^{2}(3-2r-r^{2})-h(12-24r+9r^{2}+2r^{3}-r^{4})}{102-81r+9r^{2}+8r^{3}-2r^{4}}, \\ \dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{102-81r+9r^{2}+8r^{3}-2r^{4}}\end{array}} \right)$ $\left( {\dfrac{a(1-r)}{2-r}, \dfrac{a(1-r)}{2-r}} \right)$
$\left( {p_{1}^{\ast } , p_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{a(156-153r+21r^{2}+16r^{3}-4r^{4})-h(2-r)(6-9r+r^{3})}{2(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\ \dfrac{a(138-r(135-r(23+2r(7-2r)))) +h(2-r)(30-r(9+(3-r)r))}{2(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\dfrac{a}{2(2-r)}, \dfrac{a}{2(2-r)}} \right)$
$I^{{\rm \ast }}$ $\dfrac{a(30-39r+8r^{2}+r^{3})-h(2-r)^{2}(30-9r-3r^{2}+r^{3})}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}$ 0
$\left( {Q_{1}^{\ast } , Q_{2}^{\ast } } \right)$ $\left( {\begin{array}{l} \dfrac{2a(1-r)(39-r(9+2r))+h(2-r)(r(33+6r-4r^{2})-54)}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})}, \\\dfrac{(2-r)(2a(3-r)(1-r)(3+r)+h(30-r(9+(3-r)r)))}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})} \end{array}} \right)$ $\left( {\begin{array}{l} \dfrac{a}{2(2-r)(1+r)}, \\ \dfrac{a}{2(2-r)(1+r)}\end{array}} \right)$
$\pi_{m}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}D-4ahE+4a^{2}K}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
$\pi_{b}^{\ast } $ $\dfrac{h^{2}(2-r)^{2}A-2ahB+a^{2}C}{2(1-r^{2})(102-81r+9r^{2}+8r^{3}-2r^{4})^{2}}$ $\dfrac{a^{2}(1-r)}{(r+1)(2-r)^{2}}$
[1]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[2]

Ata Allah Taleizadeh, Leopoldo Eduardo Cárdenas-Barrón, Roya Sohani. Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-27. doi: 10.3934/jimo.2018118

[3]

Kar Hung Wong, Yu Chung Eugene Lee, Heung Wing Joseph Lee, Chi Kin Chan. Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels. Journal of Industrial & Management Optimization, 2018, 14 (3) : 877-894. doi: 10.3934/jimo.2017080

[4]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[5]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[6]

Yong Zhang, Xingyu Yang, Baixun Li. Distribution-free solutions to the extended multi-period newsboy problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 633-647. doi: 10.3934/jimo.2016037

[7]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[8]

Christina Burt, Louis Caccetta, Leon Fouché, Palitha Welgama. An MILP approach to multi-location, multi-period equipment selection for surface mining with case studies. Journal of Industrial & Management Optimization, 2016, 12 (2) : 403-430. doi: 10.3934/jimo.2016.12.403

[9]

Qiang Lin, Ying Peng, Ying Hu. Supplier financing service decisions for a capital-constrained supply chain: Trade credit vs. combined credit financing. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019026

[10]

Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in production-inventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1009-1029. doi: 10.3934/jimo.2016.12.1009

[11]

Jonas C. P. Yu, H. M. Wee, K. J. Wang. Supply chain partnership for Three-Echelon deteriorating inventory model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 827-842. doi: 10.3934/jimo.2008.4.827

[12]

Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial & Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535

[13]

Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643

[14]

Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229

[15]

Chuangwei Lin, Li Zeng, Huiling Wu. Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase. Journal of Industrial & Management Optimization, 2019, 15 (1) : 401-427. doi: 10.3934/jimo.2018059

[16]

Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018189

[17]

João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics & Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007

[18]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[19]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[20]

Jing Shi, Tiaojun Xiao. Service investment and consumer returns policy in a vendor-managed inventory supply chain. Journal of Industrial & Management Optimization, 2015, 11 (2) : 439-459. doi: 10.3934/jimo.2015.11.439

2017 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]