doi: 10.3934/jimo.2019038

On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy

1. 

School of Economics, Southwest University of Political Science and Law, Chongqing 401120, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Zhimin Zhang

Received  July 2018 Revised  November 2018 Published  May 2019

Fund Project: The research of Xuanhua Peng was supported by the Chongqing Social Science Planning Project (No. 2017YBGL151), the Chongqing Municipal Education Commission Humanities and Social Sciences Research Project (No. 18SKGH006) and the Southwest University of Political Science and Law Research Project (No. 2018XZQN-35). The research of Zhimin Zhang was supported by the National Natural Science Foundation of China (Nos. 11471058, 11871121), MOE (Ministry of Education in China) Project of Humanities and Social Sciences (No. 16YJC910005) and Fundamental Research Funds for the Central Universities (No. 2018CDQYST0016)

In this paper, we model the insurance company's surplus flow by a perturbed compound Poisson model. Suppose that at a sequence of random time points, the insurance company observes the surplus to decide dividend payments. If the observed surplus level is larger than the maximum of a threshold $ b>0 $ and the last observed level (after dividends payment if possible), then a fraction $ 0<\theta<1 $ of the excess amount is paid out as a lump sum dividend. We assume that the solvency is also discretely monitored at these observation times, so that the surplus process stops when the observed value becomes negative. Integro-differential equations for the expected discounted dividend payments before ruin and the Gerber-Shiu expected discounted penalty function are derived, and solutions are also analyzed by Laplace transform method. Numerical examples are given to illustrate the applicability of our results.

Citation: Xuanhua Peng, Wen Su, Zhimin Zhang. On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019038
References:
[1]

H. AlbrecherN. Bäuerle and S. Thonhauser, Optimal dividend-payout in random discrete time, Statistics and Risk Modeling, 28 (2011a), 251-276. doi: 10.1524/stnd.2011.1097. Google Scholar

[2]

H. AlbrecherE. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends, ASTIN Bulletin, 41 (2011b), 645-672. Google Scholar

[3]

H. AlbrecherE. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scandinavian Actuarial Journal, 6 (2013), 424-452. doi: 10.1080/03461238.2011.624686. Google Scholar

[4]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281. doi: 10.2143/AST.32.2.1029. Google Scholar

[5]

B. AvanziE. C. K. CheungB. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113. doi: 10.1016/j.insmatheco.2012.10.008. Google Scholar

[6]

B. AvanziV. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224. doi: 10.1016/j.insmatheco.2014.01.005. Google Scholar

[7]

B. AvanziW. Tu and B. Wong, Optimal dividends under Erlang(2) inter-dividend decision times, Insurance: Mathematics and Economics, 79 (2018), 225-242. doi: 10.1016/j.insmatheco.2018.01.009. Google Scholar

[8]

E. C. K. Cheung and Z. Zhang, Periodic threshold-type dividend strategy in the compound Poisson risk model, Sandinavian Actuarial Journal, 1 (2019), 1-31. doi: 10.1080/03461238.2018.1481454. Google Scholar

[9]

B. de Finetti, Su un' impostazione alternativa dell teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443. Google Scholar

[10]

D. C. M. Dickson and C. Hipp, On the time to ruin for Erlang(2) risk processes, Insurance: Mathematics and Economics, 29 (2001), 333-344. doi: 10.1016/S0167-6687(01)00091-9. Google Scholar

[11]

H. DongC. Yin and H. Dai, Spectrally negative Lévy risk model under Erlangized barrier strategy, Journal of Computational and Applied Mathematics, 351 (2019), 101-116. doi: 10.1016/j.cam.2018.11.001. Google Scholar

[12]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion, Insurance: Mathematics and Economics, 10 (1991), 51-59. doi: 10.1016/0167-6687(91)90023-Q. Google Scholar

[13]

H. Gao and C. Yin, The perturbed Sparre Andersen model with a threshold dividend strategy, Journal of Computational and Applied Mathematics, 220 (2008), 394-408. doi: 10.1016/j.cam.2007.08.015. Google Scholar

[14]

H. U. Gerber, An extension of the renewal equation and its application in the collective theory of risk, Scandinavian Actuarial Journal, (1970), 205–210. doi: 10.1080/03461238.1970.10405664. Google Scholar

[15]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance: Mathematics and Economics, 22 (1998), 263-276. doi: 10.1016/S0167-6687(98)00014-6. Google Scholar

[16]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78. doi: 10.1080/10920277.1998.10595671. Google Scholar

[17]

H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20. doi: 10.1080/10920277.2004.10596125. Google Scholar

[18]

A. E. Kyprianou, Fluctuations of Lévy Processes with Applications: Introductory Lectures, Second edition. Universitext. Springer, Heidelberg, 2014. doi: 10.1007/978-3-642-37632-0. Google Scholar

[19]

D. LandriaultB. LiJ. T. Y. Wong and D. Xu, Poissonian potential measures for Lévy risk models, Insurance: Mathematics and Economics, 82 (2018), 152-166. doi: 10.1016/j.insmatheco.2018.07.004. Google Scholar

[20]

S. Li, The distribution of the dividend payments in the compound Poisson risk model perturbed by diffusion, Scandinavian Actuarial Journal, 2 (2006), 73-85. doi: 10.1080/03461230600589237. Google Scholar

[21]

S. Li and J. Garrido, On ruin for the Eralng(n) risk model, Insurance: Mathematics and Economics, 34 (2004), 391-408. doi: 10.1016/j.insmatheco.2004.01.002. Google Scholar

[22]

X. S. Lin and K. P. Pavlova, The compound Poisson risk model with a threshold dividend strategy, Insurance: Mathematics and Economics, 38 (2006), 57-80. doi: 10.1016/j.insmatheco.2005.08.001. Google Scholar

[23]

X. S. LinG. E. Willmot and S. Drekic, The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 33 (2003), 551-566. doi: 10.1016/j.insmatheco.2003.08.004. Google Scholar

[24]

W. SuY. Yong and Z. Zhang, Estimating the Gerber-Shiu function in the perturbed compound Poisson model by Laguerre series expansion, Journal of Mathematical Analysis and Applications, 469 (2019), 705-729. doi: 10.1016/j.jmaa.2018.09.033. Google Scholar

[25]

C. C. L. Tsai and G. E. Willmot, A generalized defective renewal equation for the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 30 (2002), 51-66. doi: 10.1016/S0167-6687(01)00096-8. Google Scholar

[26]

N. Wan, Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insurance: Mathematics and Economics, 40 (2007), 509–523. doi: 10.1016/j.insmatheco.2006.08.002. Google Scholar

[27]

H. Yang and Z. Zhang, The perturbed compound Poisson risk model with multi-layer dividend strategy, Statistics and Probability Letters, 79 (2009), 70-78. doi: 10.1016/j.spl.2008.07.017. Google Scholar

[28]

C. YinY. Shen and Y. Wen, Exit problems for jump processes with applications to dividend problems, Journal of Computational and Applied Mathematics, 245 (2013), 30-52. doi: 10.1016/j.cam.2012.12.004. Google Scholar

[29]

C. Yin and Y. Wen, Optimal dividend problem with a terminal value for spectrally positive Levy processes, Insurance: Mathematics and Economics, 53 (2013), 769-773. doi: 10.1016/j.insmatheco.2013.09.019. Google Scholar

[30]

C. YinY. Wen and Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651. doi: 10.1017/asb.2014.12. Google Scholar

[31]

Z. Zhang, On a risk model with randomized dividend-decision times, Journal of Insdustrial and Management Optimization, 10 (2014), 1041-1058. doi: 10.3934/jimo.2014.10.1041. Google Scholar

[32]

Z. Zhang, Estimating the Gerber-Shiu function by Fourier-Sinc series expansion, Sandinavian Actuarial Journal, 10 (2017), 1-22. doi: 10.1080/03461238.2016.1268541. Google Scholar

[33]

Z. Zhang and E. C. K. Cheung, The Markov additive risk process under an Erlangized dividend barrier strategy, Methodology and Computing in Applied Probability, 18 (2016), 275-306. doi: 10.1007/s11009-014-9414-7. Google Scholar

[34]

Z. Zhang and E. C. K. Cheung, A note on a Lévy insurance risk model under periodic dividend decisions, Journal of Industrial and Management Optimization, 14 (2018), 35-63. doi: 10.3934/jimo.2017036. Google Scholar

[35]

Z. ZhangE. C. K. Cheung and H. Yang, Lévy insurance risk process with Poissonian taxation, Scandinavian Actuarial Journal, 1 (2017), 51-87. doi: 10.1080/03461238.2015.1062042. Google Scholar

[36]

Z. ZhangE. C. K. Cheung and H. Yang, On the compound Poisson risk model with periodic capital injection, ASTIN Bulletin, 48 (2018), 435-477. doi: 10.1017/asb.2017.22. Google Scholar

[37]

Z. Zhang and C. Liu, Moments of discounted dividend payments in a risk model with randomized dividend-decision times, Frontiers of Mathematics in China, 12 (2017), 493-513. doi: 10.1007/s11464-016-0609-9. Google Scholar

[38]

Y. ZhaoR. Wang and C. Yin, Optimal dividends and capital injections for a spectrally positive Lévy process, Journal of Industrial and Management Optimization, 13 (2017), 1-21. doi: 10.3934/jimo.2016001. Google Scholar

show all references

References:
[1]

H. AlbrecherN. Bäuerle and S. Thonhauser, Optimal dividend-payout in random discrete time, Statistics and Risk Modeling, 28 (2011a), 251-276. doi: 10.1524/stnd.2011.1097. Google Scholar

[2]

H. AlbrecherE. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends, ASTIN Bulletin, 41 (2011b), 645-672. Google Scholar

[3]

H. AlbrecherE. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scandinavian Actuarial Journal, 6 (2013), 424-452. doi: 10.1080/03461238.2011.624686. Google Scholar

[4]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281. doi: 10.2143/AST.32.2.1029. Google Scholar

[5]

B. AvanziE. C. K. CheungB. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113. doi: 10.1016/j.insmatheco.2012.10.008. Google Scholar

[6]

B. AvanziV. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224. doi: 10.1016/j.insmatheco.2014.01.005. Google Scholar

[7]

B. AvanziW. Tu and B. Wong, Optimal dividends under Erlang(2) inter-dividend decision times, Insurance: Mathematics and Economics, 79 (2018), 225-242. doi: 10.1016/j.insmatheco.2018.01.009. Google Scholar

[8]

E. C. K. Cheung and Z. Zhang, Periodic threshold-type dividend strategy in the compound Poisson risk model, Sandinavian Actuarial Journal, 1 (2019), 1-31. doi: 10.1080/03461238.2018.1481454. Google Scholar

[9]

B. de Finetti, Su un' impostazione alternativa dell teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443. Google Scholar

[10]

D. C. M. Dickson and C. Hipp, On the time to ruin for Erlang(2) risk processes, Insurance: Mathematics and Economics, 29 (2001), 333-344. doi: 10.1016/S0167-6687(01)00091-9. Google Scholar

[11]

H. DongC. Yin and H. Dai, Spectrally negative Lévy risk model under Erlangized barrier strategy, Journal of Computational and Applied Mathematics, 351 (2019), 101-116. doi: 10.1016/j.cam.2018.11.001. Google Scholar

[12]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion, Insurance: Mathematics and Economics, 10 (1991), 51-59. doi: 10.1016/0167-6687(91)90023-Q. Google Scholar

[13]

H. Gao and C. Yin, The perturbed Sparre Andersen model with a threshold dividend strategy, Journal of Computational and Applied Mathematics, 220 (2008), 394-408. doi: 10.1016/j.cam.2007.08.015. Google Scholar

[14]

H. U. Gerber, An extension of the renewal equation and its application in the collective theory of risk, Scandinavian Actuarial Journal, (1970), 205–210. doi: 10.1080/03461238.1970.10405664. Google Scholar

[15]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance: Mathematics and Economics, 22 (1998), 263-276. doi: 10.1016/S0167-6687(98)00014-6. Google Scholar

[16]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78. doi: 10.1080/10920277.1998.10595671. Google Scholar

[17]

H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20. doi: 10.1080/10920277.2004.10596125. Google Scholar

[18]

A. E. Kyprianou, Fluctuations of Lévy Processes with Applications: Introductory Lectures, Second edition. Universitext. Springer, Heidelberg, 2014. doi: 10.1007/978-3-642-37632-0. Google Scholar

[19]

D. LandriaultB. LiJ. T. Y. Wong and D. Xu, Poissonian potential measures for Lévy risk models, Insurance: Mathematics and Economics, 82 (2018), 152-166. doi: 10.1016/j.insmatheco.2018.07.004. Google Scholar

[20]

S. Li, The distribution of the dividend payments in the compound Poisson risk model perturbed by diffusion, Scandinavian Actuarial Journal, 2 (2006), 73-85. doi: 10.1080/03461230600589237. Google Scholar

[21]

S. Li and J. Garrido, On ruin for the Eralng(n) risk model, Insurance: Mathematics and Economics, 34 (2004), 391-408. doi: 10.1016/j.insmatheco.2004.01.002. Google Scholar

[22]

X. S. Lin and K. P. Pavlova, The compound Poisson risk model with a threshold dividend strategy, Insurance: Mathematics and Economics, 38 (2006), 57-80. doi: 10.1016/j.insmatheco.2005.08.001. Google Scholar

[23]

X. S. LinG. E. Willmot and S. Drekic, The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 33 (2003), 551-566. doi: 10.1016/j.insmatheco.2003.08.004. Google Scholar

[24]

W. SuY. Yong and Z. Zhang, Estimating the Gerber-Shiu function in the perturbed compound Poisson model by Laguerre series expansion, Journal of Mathematical Analysis and Applications, 469 (2019), 705-729. doi: 10.1016/j.jmaa.2018.09.033. Google Scholar

[25]

C. C. L. Tsai and G. E. Willmot, A generalized defective renewal equation for the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 30 (2002), 51-66. doi: 10.1016/S0167-6687(01)00096-8. Google Scholar

[26]

N. Wan, Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insurance: Mathematics and Economics, 40 (2007), 509–523. doi: 10.1016/j.insmatheco.2006.08.002. Google Scholar

[27]

H. Yang and Z. Zhang, The perturbed compound Poisson risk model with multi-layer dividend strategy, Statistics and Probability Letters, 79 (2009), 70-78. doi: 10.1016/j.spl.2008.07.017. Google Scholar

[28]

C. YinY. Shen and Y. Wen, Exit problems for jump processes with applications to dividend problems, Journal of Computational and Applied Mathematics, 245 (2013), 30-52. doi: 10.1016/j.cam.2012.12.004. Google Scholar

[29]

C. Yin and Y. Wen, Optimal dividend problem with a terminal value for spectrally positive Levy processes, Insurance: Mathematics and Economics, 53 (2013), 769-773. doi: 10.1016/j.insmatheco.2013.09.019. Google Scholar

[30]

C. YinY. Wen and Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651. doi: 10.1017/asb.2014.12. Google Scholar

[31]

Z. Zhang, On a risk model with randomized dividend-decision times, Journal of Insdustrial and Management Optimization, 10 (2014), 1041-1058. doi: 10.3934/jimo.2014.10.1041. Google Scholar

[32]

Z. Zhang, Estimating the Gerber-Shiu function by Fourier-Sinc series expansion, Sandinavian Actuarial Journal, 10 (2017), 1-22. doi: 10.1080/03461238.2016.1268541. Google Scholar

[33]

Z. Zhang and E. C. K. Cheung, The Markov additive risk process under an Erlangized dividend barrier strategy, Methodology and Computing in Applied Probability, 18 (2016), 275-306. doi: 10.1007/s11009-014-9414-7. Google Scholar

[34]

Z. Zhang and E. C. K. Cheung, A note on a Lévy insurance risk model under periodic dividend decisions, Journal of Industrial and Management Optimization, 14 (2018), 35-63. doi: 10.3934/jimo.2017036. Google Scholar

[35]

Z. ZhangE. C. K. Cheung and H. Yang, Lévy insurance risk process with Poissonian taxation, Scandinavian Actuarial Journal, 1 (2017), 51-87. doi: 10.1080/03461238.2015.1062042. Google Scholar

[36]

Z. ZhangE. C. K. Cheung and H. Yang, On the compound Poisson risk model with periodic capital injection, ASTIN Bulletin, 48 (2018), 435-477. doi: 10.1017/asb.2017.22. Google Scholar

[37]

Z. Zhang and C. Liu, Moments of discounted dividend payments in a risk model with randomized dividend-decision times, Frontiers of Mathematics in China, 12 (2017), 493-513. doi: 10.1007/s11464-016-0609-9. Google Scholar

[38]

Y. ZhaoR. Wang and C. Yin, Optimal dividends and capital injections for a spectrally positive Lévy process, Journal of Industrial and Management Optimization, 13 (2017), 1-21. doi: 10.3934/jimo.2016001. Google Scholar

Figure 1.  $ V(u;b) $ as a function of $ u $: (a) Exponential; (b) Erlang(2); (c) Mixture of exponentials; (d) Compound of exponentials
Figure 2.  $ V(u;b) $ as a function of $ b $: (a) Exponential; (b) Erlang(2); (c) Mixture of exponentials; (d) Compound of exponentials
Figure 3.  $ \phi(u;b) $ as a function of $ u $: (a) Exponential; (b) Erlang(2); (c) Mixture of exponentials; (d) Combination of exponentials
Figure 4.  $ \phi(u;b) $ as a function of $ b $: (a) Exponential; (b) Erlang(2); (c) Mixture of exponentials; (d) Combination of exponentials
Figure 5.  The Gerber-Shiu function $ \phi(u;b) $: (a) $ b = 5 $; (b) $ u = 5 $
[1]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[2]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[3]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[4]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[5]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[6]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[7]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal dividend and capital injection strategy with fixed costs and restricted dividend rate for a dual model. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1235-1259. doi: 10.3934/jimo.2014.10.1235

[8]

Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control & Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001

[9]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[10]

Thanh-Anh Nguyen, Dinh-Ke Tran, Nhu-Quan Nguyen. Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3637-3654. doi: 10.3934/dcdsb.2016114

[11]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[12]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[13]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[14]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

[15]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

[16]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial & Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[17]

Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379

[18]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[19]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[20]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

2018 Impact Factor: 1.025

Article outline

Figures and Tables

[Back to Top]