• Previous Article
    A dynamic lot sizing model with production-or-outsourcing decision under minimum production quantities
  • JIMO Home
  • This Issue
  • Next Article
    Optimal expansion timing decisions in multi-stage PPP projects involving dedicated asset and government subsidies
doi: 10.3934/jimo.2019032

CVaR-based robust models for portfolio selection

1. 

School of Mathematical Sciences, Chongqing Normal University, No. 12 Tianchen Road, Shapingba, Chongqing 400047, China

2. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia

3. 

College of Electrical Engineering and Information Technology, Sichuan University, No. 24 Yihuan Road, Chengdu, Sichuan 610065, China

4. 

School of Science, Hebei University of Technology, No. 5340 Xiping Road, Beichen, Tianjin 300130, China

* Corresponding author: Bin Li

The first and the third to fifth author were saddened by Grace's passing, and dedicate this joint paper to her memory

Received  April 2018 Revised  October 2018 Published  May 2019

Fund Project: This work was partially supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory for National Defence, No. KGJZDSYS-2018-03, a grant from Sichuan Science and Technology Program under number 2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities (China)

This study relaxes the distributional assumption of the return of the risky asset, to arrive at the optimal portfolio. Studies of portfolio selection models have typically assumed that stock returns conform to the normal distribution. The application of robust optimization techniques means that only the historical mean and variance of asset returns are required instead of distributional information. We show that the method results in an optimal portfolio that has comparable return and yet equivalent risk, to one that assumes normality of asset returns.

Citation: Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019032
References:
[1]

X. Q. CaiK. L. TeoX. Q. Yang and X. Y.Zhou, Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972. doi: 10.1287/mnsc.46.7.957.12039. Google Scholar

[2]

W. ChenM. SimJ. Sun and C. Teo, From CVaR to uncertain set: Implications in joint chance-constrained optimization, Operations Research, 58 (2010), 470-485. doi: 10.1287/opre.1090.0712. Google Scholar

[3]

M. C. ChiuH. Y. Wong and D. Li, Roy's safety-first portfolio principle in financial risk management of disastrous events, Risk Analysis, 32 (2012), 1856-1872. doi: 10.1111/j.1539-6924.2011.01751.x. Google Scholar

[4]

X. T. DengZ. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292. doi: 10.1016/j.ejor.2004.01.040. Google Scholar

[5]

H. Konno, Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156. doi: 10.15807/jorsj.33.139. Google Scholar

[6]

H. Konno and K. Suzuki, A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187. doi: 10.15807/jorsj.38.173. Google Scholar

[7]

H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 501-623. doi: 10.1287/mnsc.37.5.519. Google Scholar

[8]

B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs, Pacific Journal of Optimization, to appear. Google Scholar

[9]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. Google Scholar

[10]

B. LiQ. XunJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039. Google Scholar

[11]

B. LiY. RongJ. Sun and K. L. Teo., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. doi: 10.1109/LSP.2017.2773601. Google Scholar

[12]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474. doi: 10.1109/TWC.2016.2625246. Google Scholar

[13]

X. Li and Z. Y. Wu, Dynamic Downside Risk Measure and Optimal Asset Allocation, Presented at FMA, 2006.Google Scholar

[14]

H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar

[15]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, New York: John Wiley & Sons, 1959. Google Scholar

[16]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996. doi: 10.1137/050622328. Google Scholar

[17]

Y. SunG. AwK. L. Teo and G. Zhou, Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283. doi: 10.3934/jimo.2015.11.1275. Google Scholar

[18]

Y. SunG. AwK. L. TeoY. Zhu and X. Wang, Multi-period portfolio optimization under probabilistic risk measure, Finance Research Letter, 44 (2016), 801-807. doi: 10.1016/j.orl.2016.10.006. Google Scholar

[19]

K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349. doi: 10.1023/A:1010909632198. Google Scholar

[20]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust jonit chance constraints with second-order moment information, Math. Program. Ser. A, 137 (2013), 167-198. doi: 10.1007/s10107-011-0494-7. Google Scholar

show all references

References:
[1]

X. Q. CaiK. L. TeoX. Q. Yang and X. Y.Zhou, Portfolio optimization under a minimax rule, Management Science, 46 (2000), 957-972. doi: 10.1287/mnsc.46.7.957.12039. Google Scholar

[2]

W. ChenM. SimJ. Sun and C. Teo, From CVaR to uncertain set: Implications in joint chance-constrained optimization, Operations Research, 58 (2010), 470-485. doi: 10.1287/opre.1090.0712. Google Scholar

[3]

M. C. ChiuH. Y. Wong and D. Li, Roy's safety-first portfolio principle in financial risk management of disastrous events, Risk Analysis, 32 (2012), 1856-1872. doi: 10.1111/j.1539-6924.2011.01751.x. Google Scholar

[4]

X. T. DengZ. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium, European Journal of Operational Research, 166 (2005), 278-292. doi: 10.1016/j.ejor.2004.01.040. Google Scholar

[5]

H. Konno, Piecewise linear risk function and portfolio optimization, Journal of the Operations Research Society of Japan, 33 (1990), 139-156. doi: 10.15807/jorsj.33.139. Google Scholar

[6]

H. Konno and K. Suzuki, A mean-variance-skewness optimization model, Journal of the Operations Research Society of Japan, 38 (1995), 137-187. doi: 10.15807/jorsj.38.173. Google Scholar

[7]

H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 501-623. doi: 10.1287/mnsc.37.5.519. Google Scholar

[8]

B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs, Pacific Journal of Optimization, to appear. Google Scholar

[9]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. Google Scholar

[10]

B. LiQ. XunJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039. Google Scholar

[11]

B. LiY. RongJ. Sun and K. L. Teo., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. doi: 10.1109/LSP.2017.2773601. Google Scholar

[12]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474. doi: 10.1109/TWC.2016.2625246. Google Scholar

[13]

X. Li and Z. Y. Wu, Dynamic Downside Risk Measure and Optimal Asset Allocation, Presented at FMA, 2006.Google Scholar

[14]

H. Markowitz, Portfolio Selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar

[15]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investment, New York: John Wiley & Sons, 1959. Google Scholar

[16]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996. doi: 10.1137/050622328. Google Scholar

[17]

Y. SunG. AwK. L. Teo and G. Zhou, Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283. doi: 10.3934/jimo.2015.11.1275. Google Scholar

[18]

Y. SunG. AwK. L. TeoY. Zhu and X. Wang, Multi-period portfolio optimization under probabilistic risk measure, Finance Research Letter, 44 (2016), 801-807. doi: 10.1016/j.orl.2016.10.006. Google Scholar

[19]

K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function, Annals of Operations Research, 101 (2001), 333-349. doi: 10.1023/A:1010909632198. Google Scholar

[20]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust jonit chance constraints with second-order moment information, Math. Program. Ser. A, 137 (2013), 167-198. doi: 10.1007/s10107-011-0494-7. Google Scholar

Figure 1.  Efficient Frontier Comparison
Figure 2.  Frontier Comparison
[1]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[2]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018177

[3]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[4]

Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014

[5]

Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial & Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549

[6]

Yue Qi, Zhihao Wang, Su Zhang. On analyzing and detecting multiple optima of portfolio optimization. Journal of Industrial & Management Optimization, 2018, 14 (1) : 309-323. doi: 10.3934/jimo.2017048

[7]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[8]

Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33

[9]

Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025

[10]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-30. doi: 10.3934/dcdsb.2019136

[11]

Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 309-325. doi: 10.3934/naco.2013.3.309

[12]

Xin Zhang, Jie Wen, Qin Ni. Subspace trust-region algorithm with conic model for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 223-234. doi: 10.3934/naco.2013.3.223

[13]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[14]

Ying Ji, Shaojian Qu, Yeming Dai. A new approach for worst-case regret portfolio optimization problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 761-770. doi: 10.3934/dcdss.2019050

[15]

Zhongbao Zhou, Ximei Zeng, Helu Xiao, Tiantian Ren, Wenbin Liu. Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1493-1515. doi: 10.3934/jimo.2018106

[16]

Xiang-Kai Sun, Xian-Jun Long, Hong-Yong Fu, Xiao-Bing Li. Some characterizations of robust optimal solutions for uncertain fractional optimization and applications. Journal of Industrial & Management Optimization, 2017, 13 (2) : 803-824. doi: 10.3934/jimo.2016047

[17]

Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066

[18]

Jesús Fabián López Pérez, Tahir Ekin, Jesus A. Jimenez, Francis A. Méndez Mediavilla. Risk-balanced territory design optimization for a Micro finance institution. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018176

[19]

Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[20]

Yang Shen, Tak Kuen Siu. Consumption-portfolio optimization and filtering in a hidden Markov-modulated asset price model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 23-46. doi: 10.3934/jimo.2016002

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (31)
  • HTML views (193)
  • Cited by (0)

[Back to Top]