# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2018143

## Interdependent demand in the two-period newsvendor problem

 1 Department of Industrial Engineering, Yazd University, Yazd, Iran 2 Poznan University of Technology, Faculty of Engineering, Management, Poznan, Poland, IAM, METU, Ankara, Turkey 3 Department of Industrial Engineering, University of Science and Culture, Tehran, Iran 4 Department of Environment, College of Agriculture, Takestan Branch, Islamic Azad University, Takestan, Iran

* Corresponding author:Rezalotfi@stu.yazd.ac.ir

Received  March 2017 Revised  May 2018 Published  September 2018

The newsvendor problem is a classical task in inventory management. The present paper considers a two-period newsvendor problem where demand of different periods is interdependent (not independent), and seeks to follow this approach to develop a two-period newsvendor problem with unsatisfied demand or unsold quantity. Concerning the complexity of solution of multiple integrals, the problem is assessed for only two periods. In the course of a numerical solution, the probability distribution function of demand pertaining to each period is assumed to be given (in the form of a bivariate normal distribution). The optimal solution is presented in the form of the initial inventory level that maximizes the expected profit. Finally, all model parameters are subjected to a sensitivity analysis. This model can be used in a number of applications, such as procurement of raw materials in projects (e.g., construction, bridge-building and molding) where demand of different periods is interdependent. Proposed model takes into account interdependent demand oughts to provide a better solution than a model based on independent demand.

Citation: Reza Lotfi, Gerhard-Wilhelm Weber, S. Mehdi Sajadifar, Nooshin Mardani. Interdependent demand in the two-period newsvendor problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018143
##### References:

show all references

##### References:
Process of implementation of the conceptual model
Chart of Differences between the proposed model and Matsuyama [17]
Chart of the ratio ($\alpha$)
Chart of the ratio ($\beta$)
Chart of the ratio ($\delta$)
Classification of the literature
 Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount Bouakiz and Sobel [5] 1 1 Independent Perakis and Sood [24] 1 Independent Perishable Competitive Matsuyama [17] 1 Independent Mileff and Nehéz [18] 1 1 Independent Burnetas et al. [6] 1 Independent Incremental Altintas et al. [2] 1 Independent All-Unit Wang and Webster [29] 1 1 Independent Behret and Kahraman [4] 1 1 Independent Chen and Ho [8] 1 1 Independent Zhang [32] 1 Independent All-Units Zhang and Du [30] 1 Independent Zhang and Hua [31] 1 Independent Huang et al. [13] 1 Independent Sana [27] 1 Independent Chen and Ho [9] 1 1 Independent Ray and Jenamani [26] 1 1 Independent Ding and Gao [10] 1 Independent Kamburowski [14] 1 Independent Kamburowski [14] 1 Independent Pal and Sana [22] 1 Independent Hanasusanto et al. [12] 1 1 Interdependent product Alwan et al. [3] 1 Interdependent Summary 3 10 6 7 4 20 Independent 2 Interdependent 1 Perishable 1 Competitive 1 Incremental 2 All-Unit The present study 1 Interdependent Demand
 Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount Bouakiz and Sobel [5] 1 1 Independent Perakis and Sood [24] 1 Independent Perishable Competitive Matsuyama [17] 1 Independent Mileff and Nehéz [18] 1 1 Independent Burnetas et al. [6] 1 Independent Incremental Altintas et al. [2] 1 Independent All-Unit Wang and Webster [29] 1 1 Independent Behret and Kahraman [4] 1 1 Independent Chen and Ho [8] 1 1 Independent Zhang [32] 1 Independent All-Units Zhang and Du [30] 1 Independent Zhang and Hua [31] 1 Independent Huang et al. [13] 1 Independent Sana [27] 1 Independent Chen and Ho [9] 1 1 Independent Ray and Jenamani [26] 1 1 Independent Ding and Gao [10] 1 Independent Kamburowski [14] 1 Independent Kamburowski [14] 1 Independent Pal and Sana [22] 1 Independent Hanasusanto et al. [12] 1 1 Interdependent product Alwan et al. [3] 1 Interdependent Summary 3 10 6 7 4 20 Independent 2 Interdependent 1 Perishable 1 Competitive 1 Incremental 2 All-Unit The present study 1 Interdependent Demand
Conceptual Model
 Description Period $j$ Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$ Sale income $q_jx_j$ $q_jl_j$ Buying cost $p_jl_j$ $p_jl_j$ Unsold $\left(l_j-x_j\right)$ 0 Stocked amount $\alpha (l_j-x_j)$ 0 Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0 Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$ Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$ Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
 Description Period $j$ Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$ Sale income $q_jx_j$ $q_jl_j$ Buying cost $p_jl_j$ $p_jl_j$ Unsold $\left(l_j-x_j\right)$ 0 Stocked amount $\alpha (l_j-x_j)$ 0 Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0 Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$ Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$ Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
Differences between the proposed model and [17]
 Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama [17] Correlation = 0 Gap P1 866.59 790.38 8.79% P2 2173.1 1983 8.75% P3 3486.3 3181.7 8.74% P4 4801.6 4382.3 8.73% P5 5459.7 4983 8.73% P6 6118 5583.9 8.73% Mean(Gap) 8.75% Variance(Gap) 0.0000061%
 Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama [17] Correlation = 0 Gap P1 866.59 790.38 8.79% P2 2173.1 1983 8.75% P3 3486.3 3181.7 8.74% P4 4801.6 4382.3 8.73% P5 5459.7 4983 8.73% P6 6118 5583.9 8.73% Mean(Gap) 8.75% Variance(Gap) 0.0000061%
Sensitivity analysis of the proposed model
 Parameter Result of differentiation Proof $\alpha$ $\frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|}$ Appendix 3 Proof 2 $\beta$ $\frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|}$ Appendix 3 Proof 2 $\delta$ $\frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|}$ Appendix 3 Proof 2 $\pi$ $\frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi$ Appendix 3 Proof 2 $q_1$ $\frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1$ Appendix 3 Proof 3 $q_2$ $\frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2$ Appendix 3 Proof 3 $p_1$ $\frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \$ Appendix 3 Proof 4 $p_2$ $\frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$$+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}} Appendix 3 Proof 4  Parameter Result of differentiation Proof \alpha \frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|} Appendix 3 Proof 2 \beta \frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|} Appendix 3 Proof 2 \delta \frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|} Appendix 3 Proof 2 \pi \frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi Appendix 3 Proof 2 q_1 \frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1 Appendix 3 Proof 3 q_2 \frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2 Appendix 3 Proof 3 p_1 \frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \ Appendix 3 Proof 4 p_2 \frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$$+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}}$ Appendix 3 Proof 4
Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \alpha \leq 1$)
 $\alpha$ $H^*$ $l^*_1$ $l^*_2$ 20% 861.47 190.73 240.88 40% 862.27 195.58 240.88 60% 863.3 201.73 240.88 80% 864.65 209.82 240.88 100% 866.59 220.99 240.88
 $\alpha$ $H^*$ $l^*_1$ $l^*_2$ 20% 861.47 190.73 240.88 40% 862.27 195.58 240.88 60% 863.3 201.73 240.88 80% 864.65 209.82 240.88 100% 866.59 220.99 240.88
Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \beta \leq 1$)
 $\beta$ $H^*$ $l^*_1$ $l^*_2$ 20% 858.4 270.2 240.88 40% 859.07 266.14 240.88 60% 860.13 259.76 240.88 80% 862.04 248.29 240.88 100% 866.59 220.99 240.88
 $\beta$ $H^*$ $l^*_1$ $l^*_2$ 20% 858.4 270.2 240.88 40% 859.07 266.14 240.88 60% 860.13 259.76 240.88 80% 862.04 248.29 240.88 100% 866.59 220.99 240.88
Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \delta \leq 1$)
 $\delta$ $H^*$ $l^*_1$ $l^*_2$ 0% 1532.1 271.1 240.88 20% 1532.5 274.55 240.88 40% 1533.1 271.1 240.88 60% 1534 265.4 240.88 80% 1535.9 254.17 240.88 100% 1541.3 220.98 240.88
 $\delta$ $H^*$ $l^*_1$ $l^*_2$ 0% 1532.1 271.1 240.88 20% 1532.5 274.55 240.88 40% 1533.1 271.1 240.88 60% 1534 265.4 240.88 80% 1535.9 254.17 240.88 100% 1541.3 220.98 240.88
 [1] Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial & Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055 [2] Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial & Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425 [3] Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial & Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931 [4] Taofeng Ye, Shaohui Ma. Discount-offering and demand-rejection decisions for substitutable products with different profit levels. Journal of Industrial & Management Optimization, 2016, 12 (1) : 45-71. doi: 10.3934/jimo.2016.12.45 [5] Sin-Man Choi, Ximin Huang, Wai-Ki Ching. Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment. Journal of Industrial & Management Optimization, 2012, 8 (2) : 299-323. doi: 10.3934/jimo.2012.8.299 [6] Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019 [7] Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083 [8] M. M. Ali, L. Masinga. A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change. Journal of Industrial & Management Optimization, 2007, 3 (1) : 139-154. doi: 10.3934/jimo.2007.3.139 [9] Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1 [10] Shuichiro Senda, Hiroyuki Masuyama, Shoji Kasahara. A stochastic fluid model for on-demand peer-to-peer streaming services. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 611-626. doi: 10.3934/naco.2011.1.611 [11] Eva Barrena, Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa. Transferability of collective transportation line networks from a topological and passenger demand perspective. Networks & Heterogeneous Media, 2015, 10 (1) : 1-16. doi: 10.3934/nhm.2015.10.1 [12] Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095 [13] Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial & Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105 [14] María Suárez-Taboada, Carlos Vázquez. Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3503-3523. doi: 10.3934/dcdsb.2018254 [15] Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080 [16] Konstantina Skouri, Ioannis Konstantaras. Two-warehouse inventory models for deteriorating products with ramp type demand rate. Journal of Industrial & Management Optimization, 2013, 9 (4) : 855-883. doi: 10.3934/jimo.2013.9.855 [17] Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437 [18] Wei Liu, Shiji Song, Cheng Wu. Single-period inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577-590. doi: 10.3934/jimo.2012.8.577 [19] Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002 [20] Gang Qian, Deren Han, Hongjin He. Congestion control with pricing in the absence of demand and cost functions: An improved trial and error method. Journal of Industrial & Management Optimization, 2010, 6 (1) : 103-121. doi: 10.3934/jimo.2010.6.103

2018 Impact Factor: 1.025