# American Institute of Mathematical Sciences

• Previous Article
Linearized block-wise alternating direction method of multipliers for multiple-block convex programming
• JIMO Home
• This Issue
• Next Article
Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels
July  2018, 14(3): 857-876. doi: 10.3934/jimo.2017079

## Ergodic control for a mean reverting inventory model

 1 School of Insurance, Central University of Finance and Economics, Beijing 100081, China 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China 3 Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon Tong, Hong Kong, China 4 Naveen Jindal School of Management, University of Texas at Dallas, USA

Received  May 2015 Revised  August 2017 Published  September 2017

Fund Project: This research is supported by Natural and Science Natural Foundation of China(11771466,11301559,11471171), the 111 project(B17050), the National Science Foundation under grants DMS-1303775, DMS-1612880, and the Research Grants Council of the Hong Kong Special Administrative Region (CityU 500113, CityU 113 03 316). The second author is supported by PolyU grant G-YBKM

In this paper, an inventory control problem with a mean reverting inventory model is considered. The demand is assumed to follow a continuous diffusion process and a mean-reverting process which will take into account of the demand dependent of the inventory level. By choosing when and how much to stock, the objective is to minimize the long-run average cost, which consists of transaction cost for each replenishment, holding and shortage costs associated with the inventory level. An approach for deriving the average cost value of infinite time horizon is developed. By applying the theory of stochastic impulse control, we show that a unique (s, S) policy is indeed optimal. The main contribution of this work is to present a method to derive the (s, S) policy and hence the minimal long-run average cost.

Citation: Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079
##### References:
 [1] S. Axsater, Inventory Control, Third edition. International Series in Operations Research & Management Science, 225. Springer, Cham, 2015. doi: 10.1007/978-3-319-15729-0. Google Scholar [2] D. Beyer and S. P. Sethi, Average cost optimality in inventory models with Markovian demands, Journal of Optimization Theory and Applications, 92 (1997), 497-526. doi: 10.1023/A:1022651322174. Google Scholar [3] D. Beyer, S. P. Sethi and M. Taksar, Inventory models with Markovian demands and cost functions of polynomial growth, Journal of Optimization Theory and Applications, 98 (1998), 281-323. doi: 10.1023/A:1022633400174. Google Scholar [4] A. Bensoussan, Dynamic Programming and Inventory Control, IOS Press, 2011. Google Scholar [5] A. Cadenillas, P. Lakner and M. Pinedo, Optimal control of a mean-reverting inventory, Operations Research, 58 (2010), 1697-1710. doi: 10.1287/opre.1100.0835. Google Scholar [6] C. Dellacherie and P. A. Meyer, Probabilites et Potentiel. Theorie des Martingales, Hermann, Paris, 1975. Google Scholar [7] P. L. Fackler and M. J. Livingston, Optimal storage by crop producers, American Journal of Agricultural Economics, 84 (2002), 645-659. doi: 10.1111/1467-8276.00325. Google Scholar [8] S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16. doi: 10.1016/S0377-2217(00)00248-4. Google Scholar [9] B. Hogaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182. doi: 10.1111/1467-9965.00066. Google Scholar [10] R. H. Hollier, K. L. Mak and K. F. C. Yiu, Optimal inventory control of lumpy demand items using (s, S) policies with a maximum issue quantity restriction and opportunistic replenishments, International Journal of Production Research, 43 (2005), 4929-4944. doi: 10.1080/00207540500218967. Google Scholar [11] J. Jacod and A. N. Shiryaev, Limit theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05265-5. Google Scholar [12] S. S. Ko, J. Kang and E. Y. Kwon, An (s, S) inventory model with level-dependent G/M/1-Type structure, Journal of Industrial and Management Optimization, 12 (2016), 609-624. doi: 10.3934/jimo.2016.12.609. Google Scholar [13] P. Kouvelis, R. Li and Q. Ding, Managing storable commodity risks: The role of inventory and financial hedge, Manufacturing & Service Operations Management, 15 (2013), 507-521. doi: 10.1002/9781118115800.ch6. Google Scholar [14] J. Z. Liu, K. F. C. Yiu and L. H. Bai, Minimizing the ruin probability with a risk constraint, Journal of industrial and management optimization, 8 (2012), 531-547. doi: 10.3934/jimo.2012.8.531. Google Scholar [15] K. L. Mak, K. K. Lai, W. C. Ng and K. F. C. Yiu, Analysis of optimal opportunistic replenishment policies for inventory systems by using a (s, S) model with a maximum issue quantity restriction, European Journal of Operational Research, 166 (2005), 385-405. doi: 10.1016/j.ejor.2002.05.001. Google Scholar [16] M. Ormeci, J. G. Dai and J. Vande Vate, Impulse control of Brownian motion: The constrained average cost case, Operations Research, 56 (2008), 618-629. doi: 10.1287/opre.1060.0380. Google Scholar [17] E. L. Porteus, Foundations of Stochastic Inventory Theory, Stanford Business Books, Stanford, 2002.Google Scholar [18] E. Presman and S. P. Sethi, Stochastic inventory models with continuous and Poisson demands and discounted and average costs, Production and Operations Management, 15 (2004), 279-293. Google Scholar [19] F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research Society, 42 (1991), 27-37. Google Scholar [20] L. Schwartz, The Economic Order-Quantity (EOQ) Model, D. Chhajed & T. J. Lowe (Ed. ), Building Intuition: Insights From Basic Operations Management Models and Principles, Springer US, 2008.Google Scholar [21] S. P. Sethi, W. Suo, M. I. Taksar and H. Yan, Optimal production planning in a multi-product stochastic manufacturing system with long-run average cost, Discrete Event Dynamic Systems, 8 (1998), 37-54. doi: 10.1023/A:1008256409920. Google Scholar [22] S. P. Sethi, H. Zhang and Q. Zhang, Minimum average cost production planning in stochastic manufacturing systems, Mathematical Models and Methods in Applied Sciences, 8 (1998), 1251-1276. doi: 10.1142/S0218202598000585. Google Scholar [23] A. Sulem, A solvable one-dimensional model of a diffusion inventory system, Mathematics of Operations Research, 11 (1986), 125-133. doi: 10.1287/moor.11.1.125. Google Scholar [24] M. I. Taksar, Average optimal singular control and a related stopping problem, Mathematics of Operations Research, 10 (1985), 63-81. doi: 10.1287/moor.10.1.63. Google Scholar [25] S. Y. Wang, K. F. C. Yiu and K. L. Mak, Optimal inventory policy with fixed and proportional transaction costs under a risk constraint, Mathematical and Computer Modelling, 58 (2013), 1595-1614. doi: 10.1016/j.mcm.2012.03.009. Google Scholar [26] C. D. J. Waters, Inventory Control and Management, $2^{nd}$ Ed. , John Wiley & Sons, Chichester, 2003.Google Scholar [27] T. Weston, Applying stochastic dynamic programming to the valuation of gas storage and generation assets, In E. Ronn (ed. ), Real Options and Energy Management Using Options Methodology to Enhance Capital Budgeting Decisions, Risk Publications, London, 2002.Google Scholar [28] T. Wild, Best Practice in Inventory Management, $2^{nd}$ Ed. , Butterworth Heinemann, Oxford, 2002.Google Scholar [29] J. C. Williams and B. D. Wright, Storage and Commodity Markets, Cambridge University Press, 1991. doi: 10.1017/CBO9780511571855. Google Scholar [30] H. L. Xu, P. Sui, G. L. Zhou and L. Caccetta, Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method, Numerical Algebra, Control and Optimization, 3 (2013), 655-664. doi: 10.3934/naco.2013.3.655. Google Scholar [31] K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains, Journal of Industrial and Management Optimization, 4 (2008), 81-94. doi: 10.3934/jimo.2008.4.81. Google Scholar [32] K. F. C. Yiu, L. L. Xie and K. L. Mak, Analysis of bullwhip effect in supply chains with heterogeneous decision models, Journal of Industrial and Management Optimization, 5 (2009), 81-94. doi: 10.3934/jimo.2009.5.81. Google Scholar [33] Y. S. Zheng, A simple proof for optimality of (s; s) policies in infinite-horizon inventory systems, Journal of Applied Probability, 28 (1991), 802-810. doi: 10.1017/S0021900200042716. Google Scholar [34] P. H. Zipkin, Foundations of Inventory Management, McGraw-Hill/Irwin, 2000.Google Scholar

show all references

##### References:
 [1] S. Axsater, Inventory Control, Third edition. International Series in Operations Research & Management Science, 225. Springer, Cham, 2015. doi: 10.1007/978-3-319-15729-0. Google Scholar [2] D. Beyer and S. P. Sethi, Average cost optimality in inventory models with Markovian demands, Journal of Optimization Theory and Applications, 92 (1997), 497-526. doi: 10.1023/A:1022651322174. Google Scholar [3] D. Beyer, S. P. Sethi and M. Taksar, Inventory models with Markovian demands and cost functions of polynomial growth, Journal of Optimization Theory and Applications, 98 (1998), 281-323. doi: 10.1023/A:1022633400174. Google Scholar [4] A. Bensoussan, Dynamic Programming and Inventory Control, IOS Press, 2011. Google Scholar [5] A. Cadenillas, P. Lakner and M. Pinedo, Optimal control of a mean-reverting inventory, Operations Research, 58 (2010), 1697-1710. doi: 10.1287/opre.1100.0835. Google Scholar [6] C. Dellacherie and P. A. Meyer, Probabilites et Potentiel. Theorie des Martingales, Hermann, Paris, 1975. Google Scholar [7] P. L. Fackler and M. J. Livingston, Optimal storage by crop producers, American Journal of Agricultural Economics, 84 (2002), 645-659. doi: 10.1111/1467-8276.00325. Google Scholar [8] S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16. doi: 10.1016/S0377-2217(00)00248-4. Google Scholar [9] B. Hogaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182. doi: 10.1111/1467-9965.00066. Google Scholar [10] R. H. Hollier, K. L. Mak and K. F. C. Yiu, Optimal inventory control of lumpy demand items using (s, S) policies with a maximum issue quantity restriction and opportunistic replenishments, International Journal of Production Research, 43 (2005), 4929-4944. doi: 10.1080/00207540500218967. Google Scholar [11] J. Jacod and A. N. Shiryaev, Limit theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05265-5. Google Scholar [12] S. S. Ko, J. Kang and E. Y. Kwon, An (s, S) inventory model with level-dependent G/M/1-Type structure, Journal of Industrial and Management Optimization, 12 (2016), 609-624. doi: 10.3934/jimo.2016.12.609. Google Scholar [13] P. Kouvelis, R. Li and Q. Ding, Managing storable commodity risks: The role of inventory and financial hedge, Manufacturing & Service Operations Management, 15 (2013), 507-521. doi: 10.1002/9781118115800.ch6. Google Scholar [14] J. Z. Liu, K. F. C. Yiu and L. H. Bai, Minimizing the ruin probability with a risk constraint, Journal of industrial and management optimization, 8 (2012), 531-547. doi: 10.3934/jimo.2012.8.531. Google Scholar [15] K. L. Mak, K. K. Lai, W. C. Ng and K. F. C. Yiu, Analysis of optimal opportunistic replenishment policies for inventory systems by using a (s, S) model with a maximum issue quantity restriction, European Journal of Operational Research, 166 (2005), 385-405. doi: 10.1016/j.ejor.2002.05.001. Google Scholar [16] M. Ormeci, J. G. Dai and J. Vande Vate, Impulse control of Brownian motion: The constrained average cost case, Operations Research, 56 (2008), 618-629. doi: 10.1287/opre.1060.0380. Google Scholar [17] E. L. Porteus, Foundations of Stochastic Inventory Theory, Stanford Business Books, Stanford, 2002.Google Scholar [18] E. Presman and S. P. Sethi, Stochastic inventory models with continuous and Poisson demands and discounted and average costs, Production and Operations Management, 15 (2004), 279-293. Google Scholar [19] F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research Society, 42 (1991), 27-37. Google Scholar [20] L. Schwartz, The Economic Order-Quantity (EOQ) Model, D. Chhajed & T. J. Lowe (Ed. ), Building Intuition: Insights From Basic Operations Management Models and Principles, Springer US, 2008.Google Scholar [21] S. P. Sethi, W. Suo, M. I. Taksar and H. Yan, Optimal production planning in a multi-product stochastic manufacturing system with long-run average cost, Discrete Event Dynamic Systems, 8 (1998), 37-54. doi: 10.1023/A:1008256409920. Google Scholar [22] S. P. Sethi, H. Zhang and Q. Zhang, Minimum average cost production planning in stochastic manufacturing systems, Mathematical Models and Methods in Applied Sciences, 8 (1998), 1251-1276. doi: 10.1142/S0218202598000585. Google Scholar [23] A. Sulem, A solvable one-dimensional model of a diffusion inventory system, Mathematics of Operations Research, 11 (1986), 125-133. doi: 10.1287/moor.11.1.125. Google Scholar [24] M. I. Taksar, Average optimal singular control and a related stopping problem, Mathematics of Operations Research, 10 (1985), 63-81. doi: 10.1287/moor.10.1.63. Google Scholar [25] S. Y. Wang, K. F. C. Yiu and K. L. Mak, Optimal inventory policy with fixed and proportional transaction costs under a risk constraint, Mathematical and Computer Modelling, 58 (2013), 1595-1614. doi: 10.1016/j.mcm.2012.03.009. Google Scholar [26] C. D. J. Waters, Inventory Control and Management, $2^{nd}$ Ed. , John Wiley & Sons, Chichester, 2003.Google Scholar [27] T. Weston, Applying stochastic dynamic programming to the valuation of gas storage and generation assets, In E. Ronn (ed. ), Real Options and Energy Management Using Options Methodology to Enhance Capital Budgeting Decisions, Risk Publications, London, 2002.Google Scholar [28] T. Wild, Best Practice in Inventory Management, $2^{nd}$ Ed. , Butterworth Heinemann, Oxford, 2002.Google Scholar [29] J. C. Williams and B. D. Wright, Storage and Commodity Markets, Cambridge University Press, 1991. doi: 10.1017/CBO9780511571855. Google Scholar [30] H. L. Xu, P. Sui, G. L. Zhou and L. Caccetta, Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method, Numerical Algebra, Control and Optimization, 3 (2013), 655-664. doi: 10.3934/naco.2013.3.655. Google Scholar [31] K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains, Journal of Industrial and Management Optimization, 4 (2008), 81-94. doi: 10.3934/jimo.2008.4.81. Google Scholar [32] K. F. C. Yiu, L. L. Xie and K. L. Mak, Analysis of bullwhip effect in supply chains with heterogeneous decision models, Journal of Industrial and Management Optimization, 5 (2009), 81-94. doi: 10.3934/jimo.2009.5.81. Google Scholar [33] Y. S. Zheng, A simple proof for optimality of (s; s) policies in infinite-horizon inventory systems, Journal of Applied Probability, 28 (1991), 802-810. doi: 10.1017/S0021900200042716. Google Scholar [34] P. H. Zipkin, Foundations of Inventory Management, McGraw-Hill/Irwin, 2000.Google Scholar
 [1] Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027 [2] Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473 [3] Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1 [4] Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27 [5] Brahim El Asri. The value of a minimax problem involving impulse control. Journal of Dynamics & Games, 2019, 6 (1) : 1-17. doi: 10.3934/jdg.2019001 [6] Weiwei Wang, Ping Chen. A mean-reverting currency model with floating interest rates in uncertain environment. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1921-1936. doi: 10.3934/jimo.2018129 [7] Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323 [8] Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 [9] Michael Basin, Mark A. Pinsky. Control of Kalman-like filters using impulse and continuous feedback design. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 169-184. doi: 10.3934/dcdsb.2002.2.169 [10] Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008 [11] Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 [12] Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 [13] Yuri B. Gaididei, Carlos Gorria, Rainer Berkemer, Peter L. Christiansen, Atsushi Kawamoto, Mads P. Sørensen, Jens Starke. Stochastic control of traffic patterns. Networks & Heterogeneous Media, 2013, 8 (1) : 261-273. doi: 10.3934/nhm.2013.8.261 [14] Tyrone E. Duncan. Some topics in stochastic control. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1361-1373. doi: 10.3934/dcdsb.2010.14.1361 [15] Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027 [16] Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-13. doi: 10.3934/jimo.2019099 [17] Yiju Wang, Wei Xing, Hengxia Gao. Optimal ordering policy for inventory mechanism with a stochastic short-term price discount. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018199 [18] Edward Allen. Environmental variability and mean-reverting processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2073-2089. doi: 10.3934/dcdsb.2016037 [19] Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403 [20] Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations. Networks & Heterogeneous Media, 2015, 10 (3) : 699-715. doi: 10.3934/nhm.2015.10.699

2018 Impact Factor: 1.025