# American Institute of Mathematical Sciences

January  2018, 14(1): 283-308. doi: 10.3934/jimo.2017047

## Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process

 School of Mathematics, Thapar University Patiala-147004, Punjab, India

Received  July 2016 Revised  October 2016 Published  June 2017

Fund Project: The author would like to thank the Editor-in-Chief and referees for providing very helpful comments and suggestions

The objective of this manuscript is to present some new interactive geometric aggregation operators for the interval-valued intuitionistic fuzzy numbers (IVIFNs). In order to achieve it, firstly the shortcomings of the existing operators have been highlighted and then resolved it by defining new operational laws based on the pairs of hesitation degree between the membership functions. By using these improved laws, some geometric aggregation operators, namely interval-valued intuitionistic fuzzy Hamacher interactive weighted and hybrid geometric labeled as IIFHIWG and IIFHIHWG operators, respectively have been proposed. Furthermore, desirable properties corresponding to these operators have been stated. Finally, a decision-making method based on the proposed operator has been illustrated to demonstrate the approach. A computed result is compared with the existing results.

Citation: Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047
##### References:

show all references

##### References:
Information about each alternative in the form of the IVIFNs
 $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $C_6$ $X_1$ $\langle[0.2, 0.3], [0.4, 0.5]\rangle$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.4, 0.5], [0.2, 0.4]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $\langle[0.1, 0.3], [0.5, 0.6]\rangle$ $\langle[0.5, 0.7], [0.2, 0.3]\rangle$ $X_2$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.5, 0.6], [0.1, 0.3]\rangle$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.6, 0.7], [0.1, 0.2]\rangle$ $\langle[0.3, 0.4], [0.5, 0.6]\rangle$ $\langle[0.4, 0.7], [0.1, 0.2]\rangle$ $X_3$ $\langle[0.4, 0.5], [0.3, 0.4]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $\langle[0.5, 0.6], [0.3, 0.4]\rangle$ $\langle[0.6, 0.7], [0.1, 0.3]\rangle$ $\langle[0.4, 0.5], [0.3, 0.4]\rangle$ $\langle[0.3, 0.5], [0.1, 0.3]\rangle$ $X_4$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.5, 0.6], [0.1, 0.3]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $\langle[0.3, 0.4], [0.1, 0.2]\rangle$ $\langle[0.5, 0.6], [0.1, 0.3]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $X_5$ $\langle[0.5, 0.6], [0.3, 0.4]\rangle$ $\langle[0.3, 0.4], [0.3, 0.5]\rangle$ $\langle[0.6, 0.7], [0.1, 0.3]\rangle$ $\langle[0.6, 0.8], [0.1, 0.2]\rangle$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.5, 0.6], [0.2, 0.4]\rangle$
 $C_1$ $C_2$ $C_3$ $C_4$ $C_5$ $C_6$ $X_1$ $\langle[0.2, 0.3], [0.4, 0.5]\rangle$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.4, 0.5], [0.2, 0.4]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $\langle[0.1, 0.3], [0.5, 0.6]\rangle$ $\langle[0.5, 0.7], [0.2, 0.3]\rangle$ $X_2$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.5, 0.6], [0.1, 0.3]\rangle$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.6, 0.7], [0.1, 0.2]\rangle$ $\langle[0.3, 0.4], [0.5, 0.6]\rangle$ $\langle[0.4, 0.7], [0.1, 0.2]\rangle$ $X_3$ $\langle[0.4, 0.5], [0.3, 0.4]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $\langle[0.5, 0.6], [0.3, 0.4]\rangle$ $\langle[0.6, 0.7], [0.1, 0.3]\rangle$ $\langle[0.4, 0.5], [0.3, 0.4]\rangle$ $\langle[0.3, 0.5], [0.1, 0.3]\rangle$ $X_4$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.5, 0.6], [0.1, 0.3]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $\langle[0.3, 0.4], [0.1, 0.2]\rangle$ $\langle[0.5, 0.6], [0.1, 0.3]\rangle$ $\langle[0.7, 0.8], [0.1, 0.2]\rangle$ $X_5$ $\langle[0.5, 0.6], [0.3, 0.4]\rangle$ $\langle[0.3, 0.4], [0.3, 0.5]\rangle$ $\langle[0.6, 0.7], [0.1, 0.3]\rangle$ $\langle[0.6, 0.8], [0.1, 0.2]\rangle$ $\langle[0.6, 0.7], [0.2, 0.3]\rangle$ $\langle[0.5, 0.6], [0.2, 0.4]\rangle$
Effect of the parameter $\gamma$ on the ranking of the alternatives by IIFHIWG and the existing operators
 $\gamma=1$ $\gamma=2$ $\gamma=3$ Wei and Wang [26] Proposed Wang and Liu [24] Proposed Liu [20] Proposed Score value Score value Score value $X_1$ 0.0548 0.1346 0.0727 0.1454 0.0822 0.1517 $X_2$ 0.2874 0.3174 0.2998 0.3310 0.3065 0.3388 $X_3$ 0.2139 0.2713 0.2205 0.2760 0.2245 0.2793 $X_4$ 0.4463 0.4997 0.4535 0.5013 0.4576 0.5024 $X_5$ 0.2985 0.3119 0.3047 0.3166 0.3083 0.3197 ranking $X_4 \succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$
 $\gamma=1$ $\gamma=2$ $\gamma=3$ Wei and Wang [26] Proposed Wang and Liu [24] Proposed Liu [20] Proposed Score value Score value Score value $X_1$ 0.0548 0.1346 0.0727 0.1454 0.0822 0.1517 $X_2$ 0.2874 0.3174 0.2998 0.3310 0.3065 0.3388 $X_3$ 0.2139 0.2713 0.2205 0.2760 0.2245 0.2793 $X_4$ 0.4463 0.4997 0.4535 0.5013 0.4576 0.5024 $X_5$ 0.2985 0.3119 0.3047 0.3166 0.3083 0.3197 ranking $X_4 \succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$
Effect of the parameter $\gamma$ on the ranking of the alternatives by using IIFHIHWG and the existing operators
 $\gamma=1$ $\gamma=2$ $\gamma=3$ Wei and Wang [26] Proposed Wang and Liu [24] Proposed Liu [20] Proposed Score value Score value Score value $X_1$ 0.1221 0.2080 0.1434 0.2163 0.1558 0.2151 $X_2$ 0.3304 0.3674 0.3443 0.3734 0.3522 0.3795 $X_3$ 0.2535 0.3019 0.2630 0.3068 0.2692 0.3113 $X_4$ 0.3705 0.4853 0.3815 0.4815 0.3880 0.4828 $X_5$ 0.3141 0.3414 0.3164 0.3510 0.3203 0.3500 ranking $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$
 $\gamma=1$ $\gamma=2$ $\gamma=3$ Wei and Wang [26] Proposed Wang and Liu [24] Proposed Liu [20] Proposed Score value Score value Score value $X_1$ 0.1221 0.2080 0.1434 0.2163 0.1558 0.2151 $X_2$ 0.3304 0.3674 0.3443 0.3734 0.3522 0.3795 $X_3$ 0.2535 0.3019 0.2630 0.3068 0.2692 0.3113 $X_4$ 0.3705 0.4853 0.3815 0.4815 0.3880 0.4828 $X_5$ 0.3141 0.3414 0.3164 0.3510 0.3203 0.3500 ranking $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4 \succ X_2 \succ X_5 \succ X_3 \succ X_1$
Ordering of the attributes for different $\gamma$
 $\gamma$ By IIFHIWG By IIFHIHWG Aggregated IVIFN Score values Aggregated IVIFN Score values 0.1 $X_1$ $\big\langle[0.3771, 0.5753], [0.2996, 0.4247]\big\rangle$ 0.1140 $\big\langle[0.4562, 0.6029], [0.2818, 0.3971]\big\rangle$ 0.1901 $X_2$ $\big\langle[0.5042, 0.6545], [0.2324, 0.3455]\big\rangle$ 0.2904 $\big\langle[0.5016, 0.6889], [0.1971, 0.3111]\big\rangle$ 0.3411 $X_3$ $\big\langle[0.4719, 0.6441], [0.2310, 0.3559]\big\rangle$ 0.2646 $\big\langle[0.4808, 0.6605], [0.2187, 0.3395]\big\rangle$ 0.2916 $X_4$ $\big\langle[0.6130, 0.7519], [0.1218, 0.2481]\big\rangle$ 0.4975 $\big\langle[0.5404, 0.7670], [0.1097, 0.2330]\big\rangle$ 0.4824 $X_5$ $\big\langle[0.5306, 0.6405], [0.2027, 0.3595]\big\rangle$ 0.3045 $\big\langle[0.5338, 0.6603], [0.1876, 0.3397]\big\rangle$ 0.3334 Ranking $X_4\succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 0.5 $X_1$ $\big\langle[0.3805, 0.5819], [0.2933, 0.4181]\big\rangle$ 0.1255 $\big\langle[0.4597 0.6086], [0.2764 0.3914]\big\rangle$ 0.2003 $X_2$ $\big\langle[0.5092, 0.6634], [0.2249, 0.3366]\big\rangle$ 0.3056 $\big\langle[0.5062 0.6977], [0.1897 0.3023]\big\rangle$ 0.3560 $X_3$ $\big\langle[0.4734, 0.6455], [0.2285, 0.3545]\big\rangle$ 0.2679 $\big\langle[0.4826 0.6633], [0.2157 0.3367]\big\rangle$ 0.2967 $X_4$ $\big\langle[0.6133, 0.7526], [0.1214, 0.2474]\big\rangle$ 0.4986 $\big\langle[0.5406 0.7681], [0.1093 0.2319]\big\rangle$ 0.4838 $X_5$ $\big\langle[0.5318, 0.6429], [0.2009, 0.3571]\big\rangle$ 0.3084 $\big\langle[0.5352 0.6639], [0.1855 0.3361]\big\rangle$ 0.3388 Ranking $X_4\succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 1 $X_1$ $\big\langle[0.3834, 0.5868], [0.2878, 0.4132]\big\rangle$ 0.1346 $\big\langle[0.4626, 0.6125], [0.2717, 0.3875]\big\rangle$ 0.2080 $X_2$ $\big\langle[0.5134, 0.6699], [0.2185, 0.3301]\big\rangle$ 0.3174 $\big\langle[0.5100, 0.7041], [0.1835, 0.2959]\big\rangle$ 0.3674 $X_3$ $\big\langle[0.4750, 0.6467], [0.2260, 0.3533]\big\rangle$ 0.2713 $\big\langle[0.4845, 0.6659], [0.2126, 0.3341]\big\rangle$ 0.3019 $X_4$ $\big\langle[0.6136, 0.7533], [0.1210, 0.2467]\big\rangle$ 0.4997 $\big\langle[0.5409, 0.7693], [0.1089, 0.2307]\big\rangle$ 0.4853 $X_5$ $\big\langle[0.5330, 0.6449], [0.1991, 0.3551]\big\rangle$ 0.3119 $\big\langle[0.5141, 0.6751], [0.1813, 0.3249]\big\rangle$ 0.3414 Ranking $X_4\succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 2 $X_1$ $\big\langle[0.3872, 0.5923], [0.2809, 0.4077]\big\rangle$ 0.1454 $\big\langle[0.4663, 0.6161], [0.2659, 0.3839]\big\rangle$ 0.2163 $X_2$ $\big\langle[0.5186, 0.6770], [0.2106, 0.3230]\big\rangle$ 0.3310 $\big\langle[0.5268, 0.7023], [0.1847, 0.2977]\big\rangle$ 0.3734 $X_3$ $\big\langle[0.4774, 0.6484], [0.2221, 0.3516]\big\rangle$ 0.2760 $\big\langle[0.4890, 0.6646], [0.2047, 0.3354]\big\rangle$ 0.3068 $X_4$ $\big\langle[0.6141, 0.7543], [0.1202, 0.2457]\big\rangle$ 0.5013 $\big\langle[0.5556, 0.7623], [0.1172, 0.2377]\big\rangle$ 0.4815 $X_5$ $\big\langle[0.5348, 0.6473], [0.1963, 0.3527]\big\rangle$ 0.3166 $\big\langle[0.5166, 0.6813], [0.1772, 0.3187]\big\rangle$ 0.3510 Ranking $X_4\succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 5 $X_1$ $\big\langle[0.3922, 0.5987], [0.2716 0.4013]\big\rangle$ 0.1590 $\big\langle[0.4324, 0.6341], [0.2537, 0.3659]\big\rangle$ 0.2235 $X_2$ $\big\langle[0.5256, 0.6849], [0.1999 0.3151]\big\rangle$ 0.3478 $\big\langle[0.5195, 0.7130], [0.1776, 0.2870]\big\rangle$ 0.3840 $X_3$ $\big\langle[0.4815, 0.6506], [0.2153 0.3494]\big\rangle$ 0.2837 $\big\langle[0.4939, 0.6691], [0.1969, 0.3309]\big\rangle$ 0.3176 $X_4$ $\big\langle[0.6150, 0.7558], [0.1189 0.2442]\big\rangle$ 0.5039 $\big\langle[0.5565, 0.7642], [0.1158, 0.2358]\big\rangle$ 0.4846 $X_5$ $\big\langle[0.5379, 0.6504], [0.1917 0.3496]\big\rangle$ 0.3235 $\big\langle[0.5521, 0.6726], [0.1906, 0.3274]\big\rangle$ 0.3534 Ranking $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 10 $X_1$ $\big\langle[0.3952, 0.6020], [0.2659, 0.3980]\big\rangle$ 0.1667 $\big\langle[0.4360, 0.6387], [0.2474, 0.3613]\big\rangle$ 0.2330 $X_2$ $\big\langle[0.5300, 0.6889], [0.1932, 0.3111]\big\rangle$ 0.3573 $\big\langle[0.5220, 0.7368], [0.1572, 0.2632]\big\rangle$ 0.4192 $X_3$ $\big\langle[0.4847, 0.6519], [0.2102, 0.3481]\big\rangle$ 0.2891 $\big\langle[0.4767, 0.6968], [0.1744, 0.3032]\big\rangle$ 0.3479 $X_4$ $\big\langle[0.6158, 0.7568], [0.1178, 0.2432]\big\rangle$ 0.5058 $\big\langle[0.5573, 0.7657], [0.1147, 0.2343]\big\rangle$ 0.4870 $X_5$ $\big\langle[0.5403, 0.6522], [0.1882, 0.3478]\big\rangle$ 0.3282 $\big\langle[0.5608, 0.6594], [0.1933, 0.3406]\big\rangle$ 0.3432 Ranking $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_3 \succ X_5 \succ X_1$ 25 $X_1$ $\big\langle[0.3979, 0.6046], [0.2610, 0.3954]\big\rangle$ 0.1730 $\big\langle[0.4217, 0.6566], [0.2234, 0.3434]\big\rangle$ 0.2558 $X_2$ $\big\langle[0.5338, 0.6920], [0.1874, 0.3080]\big\rangle$ 0.3652 $\big\langle[0.5570, 0.7047], [0.1689, 0.2953]\big\rangle$ 0.3988 $X_3$ $\big\langle[0.4878, 0.6530], [0.2051, 0.3470]\big\rangle$ 0.2943 $\big\langle[0.5176, 0.6687], [0.1871, 0.3313]\big\rangle$ 0.3339 $X_4$ $\big\langle[0.6165, 0.7576], [0.1167, 0.2424]\big\rangle$ 0.5075 $\big\langle[0.6057, 0.7394], [0.1297, 0.2606]\big\rangle$ 0.4774 $X_5$ $\big\langle[0.5426, 0.6536], [0.1847, 0.3464]\big\rangle$ 0.3325 $\big\langle[0.5600, 0.6525], [0.1944, 0.3475]\big\rangle$ 0.3353 Ranking $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$
 $\gamma$ By IIFHIWG By IIFHIHWG Aggregated IVIFN Score values Aggregated IVIFN Score values 0.1 $X_1$ $\big\langle[0.3771, 0.5753], [0.2996, 0.4247]\big\rangle$ 0.1140 $\big\langle[0.4562, 0.6029], [0.2818, 0.3971]\big\rangle$ 0.1901 $X_2$ $\big\langle[0.5042, 0.6545], [0.2324, 0.3455]\big\rangle$ 0.2904 $\big\langle[0.5016, 0.6889], [0.1971, 0.3111]\big\rangle$ 0.3411 $X_3$ $\big\langle[0.4719, 0.6441], [0.2310, 0.3559]\big\rangle$ 0.2646 $\big\langle[0.4808, 0.6605], [0.2187, 0.3395]\big\rangle$ 0.2916 $X_4$ $\big\langle[0.6130, 0.7519], [0.1218, 0.2481]\big\rangle$ 0.4975 $\big\langle[0.5404, 0.7670], [0.1097, 0.2330]\big\rangle$ 0.4824 $X_5$ $\big\langle[0.5306, 0.6405], [0.2027, 0.3595]\big\rangle$ 0.3045 $\big\langle[0.5338, 0.6603], [0.1876, 0.3397]\big\rangle$ 0.3334 Ranking $X_4\succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 0.5 $X_1$ $\big\langle[0.3805, 0.5819], [0.2933, 0.4181]\big\rangle$ 0.1255 $\big\langle[0.4597 0.6086], [0.2764 0.3914]\big\rangle$ 0.2003 $X_2$ $\big\langle[0.5092, 0.6634], [0.2249, 0.3366]\big\rangle$ 0.3056 $\big\langle[0.5062 0.6977], [0.1897 0.3023]\big\rangle$ 0.3560 $X_3$ $\big\langle[0.4734, 0.6455], [0.2285, 0.3545]\big\rangle$ 0.2679 $\big\langle[0.4826 0.6633], [0.2157 0.3367]\big\rangle$ 0.2967 $X_4$ $\big\langle[0.6133, 0.7526], [0.1214, 0.2474]\big\rangle$ 0.4986 $\big\langle[0.5406 0.7681], [0.1093 0.2319]\big\rangle$ 0.4838 $X_5$ $\big\langle[0.5318, 0.6429], [0.2009, 0.3571]\big\rangle$ 0.3084 $\big\langle[0.5352 0.6639], [0.1855 0.3361]\big\rangle$ 0.3388 Ranking $X_4\succ X_5 \succ X_2 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 1 $X_1$ $\big\langle[0.3834, 0.5868], [0.2878, 0.4132]\big\rangle$ 0.1346 $\big\langle[0.4626, 0.6125], [0.2717, 0.3875]\big\rangle$ 0.2080 $X_2$ $\big\langle[0.5134, 0.6699], [0.2185, 0.3301]\big\rangle$ 0.3174 $\big\langle[0.5100, 0.7041], [0.1835, 0.2959]\big\rangle$ 0.3674 $X_3$ $\big\langle[0.4750, 0.6467], [0.2260, 0.3533]\big\rangle$ 0.2713 $\big\langle[0.4845, 0.6659], [0.2126, 0.3341]\big\rangle$ 0.3019 $X_4$ $\big\langle[0.6136, 0.7533], [0.1210, 0.2467]\big\rangle$ 0.4997 $\big\langle[0.5409, 0.7693], [0.1089, 0.2307]\big\rangle$ 0.4853 $X_5$ $\big\langle[0.5330, 0.6449], [0.1991, 0.3551]\big\rangle$ 0.3119 $\big\langle[0.5141, 0.6751], [0.1813, 0.3249]\big\rangle$ 0.3414 Ranking $X_4\succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 2 $X_1$ $\big\langle[0.3872, 0.5923], [0.2809, 0.4077]\big\rangle$ 0.1454 $\big\langle[0.4663, 0.6161], [0.2659, 0.3839]\big\rangle$ 0.2163 $X_2$ $\big\langle[0.5186, 0.6770], [0.2106, 0.3230]\big\rangle$ 0.3310 $\big\langle[0.5268, 0.7023], [0.1847, 0.2977]\big\rangle$ 0.3734 $X_3$ $\big\langle[0.4774, 0.6484], [0.2221, 0.3516]\big\rangle$ 0.2760 $\big\langle[0.4890, 0.6646], [0.2047, 0.3354]\big\rangle$ 0.3068 $X_4$ $\big\langle[0.6141, 0.7543], [0.1202, 0.2457]\big\rangle$ 0.5013 $\big\langle[0.5556, 0.7623], [0.1172, 0.2377]\big\rangle$ 0.4815 $X_5$ $\big\langle[0.5348, 0.6473], [0.1963, 0.3527]\big\rangle$ 0.3166 $\big\langle[0.5166, 0.6813], [0.1772, 0.3187]\big\rangle$ 0.3510 Ranking $X_4\succ X_2 \succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 5 $X_1$ $\big\langle[0.3922, 0.5987], [0.2716 0.4013]\big\rangle$ 0.1590 $\big\langle[0.4324, 0.6341], [0.2537, 0.3659]\big\rangle$ 0.2235 $X_2$ $\big\langle[0.5256, 0.6849], [0.1999 0.3151]\big\rangle$ 0.3478 $\big\langle[0.5195, 0.7130], [0.1776, 0.2870]\big\rangle$ 0.3840 $X_3$ $\big\langle[0.4815, 0.6506], [0.2153 0.3494]\big\rangle$ 0.2837 $\big\langle[0.4939, 0.6691], [0.1969, 0.3309]\big\rangle$ 0.3176 $X_4$ $\big\langle[0.6150, 0.7558], [0.1189 0.2442]\big\rangle$ 0.5039 $\big\langle[0.5565, 0.7642], [0.1158, 0.2358]\big\rangle$ 0.4846 $X_5$ $\big\langle[0.5379, 0.6504], [0.1917 0.3496]\big\rangle$ 0.3235 $\big\langle[0.5521, 0.6726], [0.1906, 0.3274]\big\rangle$ 0.3534 Ranking $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ 10 $X_1$ $\big\langle[0.3952, 0.6020], [0.2659, 0.3980]\big\rangle$ 0.1667 $\big\langle[0.4360, 0.6387], [0.2474, 0.3613]\big\rangle$ 0.2330 $X_2$ $\big\langle[0.5300, 0.6889], [0.1932, 0.3111]\big\rangle$ 0.3573 $\big\langle[0.5220, 0.7368], [0.1572, 0.2632]\big\rangle$ 0.4192 $X_3$ $\big\langle[0.4847, 0.6519], [0.2102, 0.3481]\big\rangle$ 0.2891 $\big\langle[0.4767, 0.6968], [0.1744, 0.3032]\big\rangle$ 0.3479 $X_4$ $\big\langle[0.6158, 0.7568], [0.1178, 0.2432]\big\rangle$ 0.5058 $\big\langle[0.5573, 0.7657], [0.1147, 0.2343]\big\rangle$ 0.4870 $X_5$ $\big\langle[0.5403, 0.6522], [0.1882, 0.3478]\big\rangle$ 0.3282 $\big\langle[0.5608, 0.6594], [0.1933, 0.3406]\big\rangle$ 0.3432 Ranking $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_3 \succ X_5 \succ X_1$ 25 $X_1$ $\big\langle[0.3979, 0.6046], [0.2610, 0.3954]\big\rangle$ 0.1730 $\big\langle[0.4217, 0.6566], [0.2234, 0.3434]\big\rangle$ 0.2558 $X_2$ $\big\langle[0.5338, 0.6920], [0.1874, 0.3080]\big\rangle$ 0.3652 $\big\langle[0.5570, 0.7047], [0.1689, 0.2953]\big\rangle$ 0.3988 $X_3$ $\big\langle[0.4878, 0.6530], [0.2051, 0.3470]\big\rangle$ 0.2943 $\big\langle[0.5176, 0.6687], [0.1871, 0.3313]\big\rangle$ 0.3339 $X_4$ $\big\langle[0.6165, 0.7576], [0.1167, 0.2424]\big\rangle$ 0.5075 $\big\langle[0.6057, 0.7394], [0.1297, 0.2606]\big\rangle$ 0.4774 $X_5$ $\big\langle[0.5426, 0.6536], [0.1847, 0.3464]\big\rangle$ 0.3325 $\big\langle[0.5600, 0.6525], [0.1944, 0.3475]\big\rangle$ 0.3353 Ranking $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$ $X_4\succ X_2\succ X_5 \succ X_3 \succ X_1$
 [1] Harish Garg, Kamal Kumar. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2018162 [2] Muhammad Qiyas, Saleem Abdullah, Shahzaib Ashraf, Saifullah Khan, Aziz Khan. Triangular picture fuzzy linguistic induced ordered weighted aggregation operators and its application on decision making problems. Mathematical Foundations of Computing, 2019, 2 (3) : 183-201. doi: 10.3934/mfc.2019013 [3] Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435 [4] Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115 [5] Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447 [6] Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209 [7] Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581 [8] Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082 [9] Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699 [10] Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118 [11] Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 [12] Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19 [13] Masayuki Sato, Naoki Fujita, A. J. Sievers. Logic operations demonstrated with localized vibrations in a micromechanical cantilever array. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1287-1298. doi: 10.3934/dcdss.2011.4.1287 [14] Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 [15] Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301 [16] Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309 [17] Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008 [18] Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117 [19] Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611 [20] Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

2018 Impact Factor: 1.025