# American Institute of Mathematical Sciences

October  2017, 13(4): 1793-1813. doi: 10.3934/jimo.2017019

## A numerical scheme for pricing American options with transaction costs under a jump diffusion process

 1 Department of Mathematics, Bogor Agricultural University, Kampus IPB Darmaga, Bogor, Jawa Barat 16680, Indonesia 2 Department of of Mathematics & Statistics, Curtin University, GPO Box U1987, WA 6845, Australia

Received  April 2016 Revised  July 2016 Published  December 2016

In this paper we develop a numerical method for a nonlinear partial integro-differential complementarity problem arising from pricing American options with transaction costs when the underlying assets follow a jump diffusion process. We first approximate the complementarity problem by a nonlinear partial integro-differential equation (PIDE) using a penalty approach. The PIDE is then discretized by a combination of a spatial upwind finite differencing and a fully implicit time stepping scheme. We prove that the coefficient matrix of the system from this scheme is an M-matrix and that the approximate solution converges to the viscosity solution to the PIDE by showing that the scheme is consistent, monotone, and unconditionally stable. We also propose a Newton's iterative method coupled with a Fast Fourier Transform for the computation of the discretized integral term for solving the fully discretized system. Numerical results will be presented to demonstrate the convergence rates and usefulness of this method.

Citation: Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019
##### References:

show all references

##### References:
Prices of the European call and put options with $a=0.01$ and $b=0.07$
Prices of the European call and put option for different values of the transaction cost parameter
Computed American and European put option prices
Computed American put option prices for different values of the transaction cost parameter
Computed rates of convergence for the call option with $a = 0.01$ and $b=0.07$
 $M$ $N$ $\|\cdot\|_{h,2}$ Ratio$(\|\cdot\|_{h,2})$ 21 11 0.215680 41 21 0.116543 1.85 81 41 0.061550 1.89 161 81 0.031986 1.92 321 161 0.016228 1.97 641 321 0.007861 2.06 1281 641 0.003457 2.27 2561 1281 0.001170 2.96
 $M$ $N$ $\|\cdot\|_{h,2}$ Ratio$(\|\cdot\|_{h,2})$ 21 11 0.215680 41 21 0.116543 1.85 81 41 0.061550 1.89 161 81 0.031986 1.92 321 161 0.016228 1.97 641 321 0.007861 2.06 1281 641 0.003457 2.27 2561 1281 0.001170 2.96
Computed rates of convergence for the put option with $a = 0.01$ and $b=0.07$
 $M$ $N$ $\|\cdot\|_{h,2}$ Ratio$(\|\cdot\|_{h,2})$ 21 11 0.454596 41 21 0.438884 1.04 81 41 0.390547 1.12 161 81 0.327934 1.19 321 161 0.259319 1.26 641 321 0.189478 1.37 1281 641 0.121703 1.56 2561 1281 0.058168 2.09
 $M$ $N$ $\|\cdot\|_{h,2}$ Ratio$(\|\cdot\|_{h,2})$ 21 11 0.454596 41 21 0.438884 1.04 81 41 0.390547 1.12 161 81 0.327934 1.19 321 161 0.259319 1.26 641 321 0.189478 1.37 1281 641 0.121703 1.56 2561 1281 0.058168 2.09
 [1] Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 [2] Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435 [3] Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065 [4] Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial & Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365 [5] Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783 [6] Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57 [7] Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885 [8] Ming-Zheng Wang, M. Montaz Ali. Penalty-based SAA method of stochastic nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 241-257. doi: 10.3934/jimo.2010.6.241 [9] Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241 [10] Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191 [11] Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911 [12] Wei-Zhe Gu, Li-Yong Lu. The linear convergence of a derivative-free descent method for nonlinear complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 531-548. doi: 10.3934/jimo.2016030 [13] Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095 [14] Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019225 [15] Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529 [16] Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065 [17] Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217 [18] Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537 [19] Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129 [20] Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

2018 Impact Factor: 1.025