# American Institute of Mathematical Sciences

• Previous Article
Distributed fault-tolerant consensus tracking for networked non-identical motors
• JIMO Home
• This Issue
• Next Article
Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent
April  2017, 13(2): 901-916. doi: 10.3934/jimo.2016052

## Throughput of flow lines with unreliable parallel-machine workstations and blocking

 1 Department of Statistics, Changwon National University, Changwon, Gyeongnam 641-773, Korea 2 School of Industrial Engineering and Naval Architecture, Changwon National University, Changwon, Gyeongnam 641-773, Korea

Received  May 2015 Revised  April 2016 Published  August 2016

Flow lines in which workstations and buffers are linked along a single flow path one after another are widely used for modeling manufacturing systems. In this paper we consider the flow lines with multiple independent unreliable machines at each workstation and blocking. The processing times, time to failure and time to repair of each machine are assumed to exponentially distributed and blocking after service blocking protocol is also assumed. An approximate analysis for throughput in the flow lines is presented. The method developed here is based on the decomposition method using the subsystems with three workstations including virtual station and two buffers between workstations. Some numerical examples are presented for accuracy of approximation.

Citation: Yang Woo Shin, Dug Hee Moon. Throughput of flow lines with unreliable parallel-machine workstations and blocking. Journal of Industrial & Management Optimization, 2017, 13 (2) : 901-916. doi: 10.3934/jimo.2016052
##### References:

show all references

##### References:
Flow line
Subsystems Li
Two-stage line ${\hat L}_i$
Throughput for flow lines with $m_i=1$ and $\mu_i=1.0$
 $(\nu_i,\gamma_i)$ $N$ $b_i$ Sim(c.i.) App Err(%) DDX Err(%) (0.04, 0.2) 6 0 0.3325 (±0.0006) 0.3446 3.6 0.2962 10.9 3 0.4962 (±0.0013) 0.5031 1.4 0.4804 3.2 5 0.5485 (±0.0013) 0.5497 0.2 0.5408 1.4 10 0 0.2870 (±0.0007) 0.3038 5.8 0.2430 15.3 3 0.4583 (±0.0016) 0.4718 3.0 0.4433 3.3 5 0.5157 (±0.0016) 0.5191 0.7 0.5112 0.9 (0.1, 0.5) 6 0 0.3550 (±0.0006) 0.3573 0.6 0.3149 11.3 3 0.5443 (±0.0008) 0.5432 0.2 0.5272 3.1 5 0.6003 (±0.0009) 0.5977 0.4 0.5917 1.4 10 0 0.3182 (±0.0003) 0.3175 0.2 0.2691 15.4 3 0.5174 (±0.0006) 0.5182 0.2 0.5010 3.2 5 0.5777 (±0.0008) 0.5755 0.4 0.5717 1.0
 $(\nu_i,\gamma_i)$ $N$ $b_i$ Sim(c.i.) App Err(%) DDX Err(%) (0.04, 0.2) 6 0 0.3325 (±0.0006) 0.3446 3.6 0.2962 10.9 3 0.4962 (±0.0013) 0.5031 1.4 0.4804 3.2 5 0.5485 (±0.0013) 0.5497 0.2 0.5408 1.4 10 0 0.2870 (±0.0007) 0.3038 5.8 0.2430 15.3 3 0.4583 (±0.0016) 0.4718 3.0 0.4433 3.3 5 0.5157 (±0.0016) 0.5191 0.7 0.5112 0.9 (0.1, 0.5) 6 0 0.3550 (±0.0006) 0.3573 0.6 0.3149 11.3 3 0.5443 (±0.0008) 0.5432 0.2 0.5272 3.1 5 0.6003 (±0.0009) 0.5977 0.4 0.5917 1.4 10 0 0.3182 (±0.0003) 0.3175 0.2 0.2691 15.4 3 0.5174 (±0.0006) 0.5182 0.2 0.5010 3.2 5 0.5777 (±0.0008) 0.5755 0.4 0.5717 1.0
Throughput of flow lines with $N=6$ and $m_i\mu_i=1$
 ${\pmb m}$ $b_i$ $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim App (Err(%)) Sim App (Err(%) (2, 2, 2, 2, 2, 2) 0 0.4584 (±0.0007) 0.4604 (0.4) 0.4725 (±0.0004) 0.4678 (1.0) 3 0.5843 (±0.0010) 0.5872 (0.5) 0.6077 (±0.0009) 0.6067 (0.2) 5 0.6254 (±0.0010) 0.6258 (0.1) 0.6504 (±0.0010) 0.6488 (0.2) (1, 1, 2, 2, 3, 3) 0 0.4260 (±0.0012) 0.4319 (1.4) 0.4421 (±0.0007) 0.4407 (0.3) 3 0.5613 (±0.0010) 0.5665 (0.9) 0.5930 (±0.0013) 0.5918 (0.2) 5 0.6056 (±0.0011) 0.6067 (0.2) 0.6388 (±0.0008) 0.6369 (0.3) (3, 3, 2, 2, 1, 1) 0 0.4241 (±0.0013) 0.4284 (1.0) 0.4398 (±0.0006) 0.4382 (0.4) 3 0.5608 (±0.0016) 0.5649 (0.7) 0.5926 (±0.0007) 0.5909 (0.3) 5 0.6058 (±0.0009) 0.6065 (0.1) 0.6385 (±0.0008) 0.6367 (0.3) (1, 2, 3, 3, 2, 1) 0 0.4507 (±0.0009) 0.4562 (1.2) 0.4707 (±0.0007) 0.4671 (0.8) 3 0.5754 (±0.0010) 0.5828 (1.3) 0.6069 (±0.0007) 0.6070 (0.0) 5 0.6177 (±0.0013) 0.6211 (0.5) 0.6486 (±0.0009) 0.6488 (0.0) (3, 2, 1, 1, 2, 3) 0 0.4131 (±0.0011) 0.4173 (1.0) 0.4277 (±0.0006) 0.4264 (0.3) 3 0.5532 (±0.0010) 0.5548 (0.3) 0.5839 (±0.0009) 0.5811 (0.5) 5 0.5977 (±0.0018) 0.5968 (0.1) 0.6320 (±0.0007) 0.6283 (0.6)
 ${\pmb m}$ $b_i$ $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim App (Err(%)) Sim App (Err(%) (2, 2, 2, 2, 2, 2) 0 0.4584 (±0.0007) 0.4604 (0.4) 0.4725 (±0.0004) 0.4678 (1.0) 3 0.5843 (±0.0010) 0.5872 (0.5) 0.6077 (±0.0009) 0.6067 (0.2) 5 0.6254 (±0.0010) 0.6258 (0.1) 0.6504 (±0.0010) 0.6488 (0.2) (1, 1, 2, 2, 3, 3) 0 0.4260 (±0.0012) 0.4319 (1.4) 0.4421 (±0.0007) 0.4407 (0.3) 3 0.5613 (±0.0010) 0.5665 (0.9) 0.5930 (±0.0013) 0.5918 (0.2) 5 0.6056 (±0.0011) 0.6067 (0.2) 0.6388 (±0.0008) 0.6369 (0.3) (3, 3, 2, 2, 1, 1) 0 0.4241 (±0.0013) 0.4284 (1.0) 0.4398 (±0.0006) 0.4382 (0.4) 3 0.5608 (±0.0016) 0.5649 (0.7) 0.5926 (±0.0007) 0.5909 (0.3) 5 0.6058 (±0.0009) 0.6065 (0.1) 0.6385 (±0.0008) 0.6367 (0.3) (1, 2, 3, 3, 2, 1) 0 0.4507 (±0.0009) 0.4562 (1.2) 0.4707 (±0.0007) 0.4671 (0.8) 3 0.5754 (±0.0010) 0.5828 (1.3) 0.6069 (±0.0007) 0.6070 (0.0) 5 0.6177 (±0.0013) 0.6211 (0.5) 0.6486 (±0.0009) 0.6488 (0.0) (3, 2, 1, 1, 2, 3) 0 0.4131 (±0.0011) 0.4173 (1.0) 0.4277 (±0.0006) 0.4264 (0.3) 3 0.5532 (±0.0010) 0.5548 (0.3) 0.5839 (±0.0009) 0.5811 (0.5) 5 0.5977 (±0.0018) 0.5968 (0.1) 0.6320 (±0.0007) 0.6283 (0.6)
Throughput of flow lines with $N=6$ and $\mu_i=1$
 ${\pmb m}$ $b_i$ $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim App (Err(%)) Sim App (Err(%) (2, 2, 2, 2, 2, 2) 0 0.8986 (±0.0011) 0.9110 (1.4) 0.9257 (±0.0008) 0.9243 (0.1) 3 1.1255 (±0.0011) 1.1415 (1.4) 1.1842 (±0.0012) 1.1848 (0.1) 5 1.2020 (±0.0026) 1.2077 (0.5) 1.2663 (±0.0012) 1.2646 (0.1) (1, 1, 2, 2, 3, 3) 0 0.5179 (±0.0017) 0.5176 (0.1) 0.5254 (±0.0011) 0.5245 (0.2) 3 0.6454 (±0.0009) 0.6434 (0.3) 0.6645 (±0.0012) 0.6612 (0.5) 5 0.6783 (±0.0022) 0.6778 (0.1) 0.7010 (±0.0014) 0.6983 (0.4) (3, 3, 2, 2, 1, 1) 0 0.5165 (±0.0018) 0.5178 (0.3) 0.5241 (±0.0010) 0.5242 (0.0) 3 0.6448 (±0.0013) 0.6439 (0.1) 0.6639 (±0.0010) 0.6613 (0.4) 5 0.6806 (±0.0017) 0.6780 (0.4) 0.7002 (±0.0013) 0.6983 (0.3) (1, 2, 3, 3, 2, 1) 0 0.6405 (±0.0018) 0.6811 (6.3) 0.6637 (±0.0008) 0.6898 (3.9) 3 0.7483 (±0.0026) 0.7748 (3.5) 0.7697 (±0.0013) 0.7878 (2.4) 5 0.7739 (±0.0020) 0.7854 (1.5) 0.7905 (±0.0013) 0.7994 (1.1) (3, 2, 1, 1, 2, 3) 0 0.5099 (±0.0022) 0.5108 (0.2) 0.5191 (±0.0010) 0.5178 (0.2) 3 0.6442 (±0.0023) 0.6411 (0.5) 0.6646 (±0.0009) 0.6596 (0.7) 5 0.6782 (±0.0022) 0.6764 (0.3) 0.7006 (±0.0010) 0.6977 (0.4)
 ${\pmb m}$ $b_i$ $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim App (Err(%)) Sim App (Err(%) (2, 2, 2, 2, 2, 2) 0 0.8986 (±0.0011) 0.9110 (1.4) 0.9257 (±0.0008) 0.9243 (0.1) 3 1.1255 (±0.0011) 1.1415 (1.4) 1.1842 (±0.0012) 1.1848 (0.1) 5 1.2020 (±0.0026) 1.2077 (0.5) 1.2663 (±0.0012) 1.2646 (0.1) (1, 1, 2, 2, 3, 3) 0 0.5179 (±0.0017) 0.5176 (0.1) 0.5254 (±0.0011) 0.5245 (0.2) 3 0.6454 (±0.0009) 0.6434 (0.3) 0.6645 (±0.0012) 0.6612 (0.5) 5 0.6783 (±0.0022) 0.6778 (0.1) 0.7010 (±0.0014) 0.6983 (0.4) (3, 3, 2, 2, 1, 1) 0 0.5165 (±0.0018) 0.5178 (0.3) 0.5241 (±0.0010) 0.5242 (0.0) 3 0.6448 (±0.0013) 0.6439 (0.1) 0.6639 (±0.0010) 0.6613 (0.4) 5 0.6806 (±0.0017) 0.6780 (0.4) 0.7002 (±0.0013) 0.6983 (0.3) (1, 2, 3, 3, 2, 1) 0 0.6405 (±0.0018) 0.6811 (6.3) 0.6637 (±0.0008) 0.6898 (3.9) 3 0.7483 (±0.0026) 0.7748 (3.5) 0.7697 (±0.0013) 0.7878 (2.4) 5 0.7739 (±0.0020) 0.7854 (1.5) 0.7905 (±0.0013) 0.7994 (1.1) (3, 2, 1, 1, 2, 3) 0 0.5099 (±0.0022) 0.5108 (0.2) 0.5191 (±0.0010) 0.5178 (0.2) 3 0.6442 (±0.0023) 0.6411 (0.5) 0.6646 (±0.0009) 0.6596 (0.7) 5 0.6782 (±0.0022) 0.6764 (0.3) 0.7006 (±0.0010) 0.6977 (0.4)
The number of machines of the lines in Tables 5-6
 $N=10$ ${\pmb m}=(m_1,\cdots,m_{10})$ $N=15$ ${\pmb m}=(m_1,\cdots,m_{15})$ Line 1 $(2,2,2,2,2,2,2,2,2,2)$ Line 5 $(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)$ Line 2 $(1,1,2,2,3,3,2,2,1,1)$ Line 6 $(1,1,1,2,2,2,3,3,3,2,2,2,1,1,1)$ Line 3 $(3,3,2,2,1,1,2,2,3,3)$ Line 7 $(3,3,3,2,2,2,1,1,1,2,2,2,3,3,3)$ Line 4 $(3,2,2,1,2,2,3,2,2,1)$ Line 8 $(3,3,2,2,1,1,2,2,3,3,2,2,1,1,3)$
 $N=10$ ${\pmb m}=(m_1,\cdots,m_{10})$ $N=15$ ${\pmb m}=(m_1,\cdots,m_{15})$ Line 1 $(2,2,2,2,2,2,2,2,2,2)$ Line 5 $(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)$ Line 2 $(1,1,2,2,3,3,2,2,1,1)$ Line 6 $(1,1,1,2,2,2,3,3,3,2,2,2,1,1,1)$ Line 3 $(3,3,2,2,1,1,2,2,3,3)$ Line 7 $(3,3,3,2,2,2,1,1,1,2,2,2,3,3,3)$ Line 4 $(3,2,2,1,2,2,3,2,2,1)$ Line 8 $(3,3,2,2,1,1,2,2,3,3,2,2,1,1,3)$
Throughput for the lines with $N=10, 15$, $\mu_i=\frac{1}{m_i}$ and $l_i=m_i+b_i=3$
 Lines $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim(c.i.) App (Err(%)) Sim(c.i.) App (Err(%) 1 0.4874 (±0.0003) 0.4949 (1.5) 0.5104 (±0.0004) 0.5082 (0.4) 2 0.4597 (±0.0007) 0.4729 (2.9) 0.4934 (±0.0009) 0.4914 (0.4) 3 0.4698 (±0.0011) 0.4772 (1.6) 0.4982 (±0.0008) 0.4954 (0.6) 4 0.4742 (±0.0009) 0.4836 (2.0) 0.5023 (±0.0006) 0.5004 (0.4) 5 0.4717 (±0.0007) 0.4790 (1.6) 0.4973 (±0.0004) 0.4930 (0.9) 6 0.4430 (±0.0009) 0.4567 (3.1) 0.4808 (±0.0006) 0.4767 (0.9) 7 0.4497 (±0.0007) 0.4581 (1.9) 0.4839 (±0.0005) 0.4781 (1.2) 8 0.4474 (±0.0008) 0.4596 (2.7) 0.4828 (±0.0006) 0.4790 (0.8)
 Lines $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim(c.i.) App (Err(%)) Sim(c.i.) App (Err(%) 1 0.4874 (±0.0003) 0.4949 (1.5) 0.5104 (±0.0004) 0.5082 (0.4) 2 0.4597 (±0.0007) 0.4729 (2.9) 0.4934 (±0.0009) 0.4914 (0.4) 3 0.4698 (±0.0011) 0.4772 (1.6) 0.4982 (±0.0008) 0.4954 (0.6) 4 0.4742 (±0.0009) 0.4836 (2.0) 0.5023 (±0.0006) 0.5004 (0.4) 5 0.4717 (±0.0007) 0.4790 (1.6) 0.4973 (±0.0004) 0.4930 (0.9) 6 0.4430 (±0.0009) 0.4567 (3.1) 0.4808 (±0.0006) 0.4767 (0.9) 7 0.4497 (±0.0007) 0.4581 (1.9) 0.4839 (±0.0005) 0.4781 (1.2) 8 0.4474 (±0.0008) 0.4596 (2.7) 0.4828 (±0.0006) 0.4790 (0.8)
Throughput for the lines with $N=10, 15$, $\mu_i=1.0$ and $l_i=m_i+b_i=3,5$
 Lines $l_i$ $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim(c.i.) App (Err(%)) Sim(c.i.) App (Err(%) 1 3 0.9367 (±0.0008) 0.9706 (3.6) 0.9908 (±0.0015) 0.9965 (0.6) 5 1.0663 (±0.0014) 1.0948 (2.7) 1.1382 (±0.0013) 1.1427 (0.4) 2 3 0.5671 (±0.0010) 0.5932 (4.6) 0.6018 (±0.0011) 0.6116 (1.6) 5 0.6296 (±0.0016) 0.6421 (2.0) 0.6634 (±0.0010) 0.6663 (0.4) 3 3 0.6085 (±0.0010) 0.6075 (0.1) 0.6279 (±0.0014) 0.6244 (0.6) 5 0.6600 (±0.0017) 0.6586 (0.2) 0.6820 (±0.0019) 0.6797 (0.3) 4 3 0.6840 (±0.0013) 0.7218 (5.5) 0.7162 (±0.0011) 0.7362 (2.8) 5 0.7452 (±0.0014) 0.7719 (3.6) 0.7722 (±0.0012) 0.7878 (2.0) 5 3 0.8994 (±0.0012) 0.9376 (4.3) 0.9606 (±0.0013) 0.9651 (0.5) 5 1.0334 (±0.0016) 1.0688 (3.4) 1.1134 (±0.0015) 1.1197 (0.6) 6 3 0.5167 (±0.0008) 0.5257 (1.7) 0.5539 (±0.0007) 0.5515 (0.4) 5 0.5808 (±0.0015) 0.5811 (0.1) 0.6215 (±0.0010) 0.6156 (0.9) 7 3 0.5414 (±0.0009) 0.5420 (0.1) 0.5689 (±0.0011) 0.5658 (0.5) 5 0.6000 (±0.0013) 0.5975 (0.4) 0.6324 (±0.0016) 0.6285 (0.6) 8 3 0.5657 (±0.0009) 0.5899 (4.3) 0.6006 (±0.0011) 0.6091 (1.4) 5 0.6287 (±0.0012) 0.6406 (1.9) 0.6620 (±0.0010) 0.6656 (0.5)
 Lines $l_i$ $(\nu_i,\gamma_i)=(0.04, 0.2)$ $(\nu_i,\gamma_i)=(0.1, 0.5)$ Sim(c.i.) App (Err(%)) Sim(c.i.) App (Err(%) 1 3 0.9367 (±0.0008) 0.9706 (3.6) 0.9908 (±0.0015) 0.9965 (0.6) 5 1.0663 (±0.0014) 1.0948 (2.7) 1.1382 (±0.0013) 1.1427 (0.4) 2 3 0.5671 (±0.0010) 0.5932 (4.6) 0.6018 (±0.0011) 0.6116 (1.6) 5 0.6296 (±0.0016) 0.6421 (2.0) 0.6634 (±0.0010) 0.6663 (0.4) 3 3 0.6085 (±0.0010) 0.6075 (0.1) 0.6279 (±0.0014) 0.6244 (0.6) 5 0.6600 (±0.0017) 0.6586 (0.2) 0.6820 (±0.0019) 0.6797 (0.3) 4 3 0.6840 (±0.0013) 0.7218 (5.5) 0.7162 (±0.0011) 0.7362 (2.8) 5 0.7452 (±0.0014) 0.7719 (3.6) 0.7722 (±0.0012) 0.7878 (2.0) 5 3 0.8994 (±0.0012) 0.9376 (4.3) 0.9606 (±0.0013) 0.9651 (0.5) 5 1.0334 (±0.0016) 1.0688 (3.4) 1.1134 (±0.0015) 1.1197 (0.6) 6 3 0.5167 (±0.0008) 0.5257 (1.7) 0.5539 (±0.0007) 0.5515 (0.4) 5 0.5808 (±0.0015) 0.5811 (0.1) 0.6215 (±0.0010) 0.6156 (0.9) 7 3 0.5414 (±0.0009) 0.5420 (0.1) 0.5689 (±0.0011) 0.5658 (0.5) 5 0.6000 (±0.0013) 0.5975 (0.4) 0.6324 (±0.0016) 0.6285 (0.6) 8 3 0.5657 (±0.0009) 0.5899 (4.3) 0.6006 (±0.0011) 0.6091 (1.4) 5 0.6287 (±0.0012) 0.6406 (1.9) 0.6620 (±0.0010) 0.6656 (0.5)
The number of iterations for $(\mu_i,\nu_i,\gamma_i)=(1.0/m_i,0.1,0.5)$ and $\epsilon=10^{-5}$
 $m_i$ 1 2 3 $l_i$ 1 3 5 2 3 5 3 5 $N$ 5 5 5 4 4 5 5 4 5 10 7 7 6 6 8 8 6 8 15 8 9 8 8 10 11 8 11
 $m_i$ 1 2 3 $l_i$ 1 3 5 2 3 5 3 5 $N$ 5 5 5 4 4 5 5 4 5 10 7 7 6 6 8 8 6 8 15 8 9 8 8 10 11 8 11
 [1] Bin Zheng, Min Fan, Mengqi Liu, Shang-Chia Liu, Yunqiang Yin. Parallel-machine scheduling with potential disruption and positional-dependent processing times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 697-711. doi: 10.3934/jimo.2016041 [2] Zhichao Geng, Jinjiang Yuan. Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1479-1500. doi: 10.3934/jimo.2018017 [3] Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861 [4] Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 [5] Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167 [6] Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial & Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259 [7] Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613 [8] Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems & Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055 [9] Xavier Litrico, Vincent Fromion. Modal decomposition of linearized open channel flow. Networks & Heterogeneous Media, 2009, 4 (2) : 325-357. doi: 10.3934/nhm.2009.4.325 [10] Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036 [11] Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365 [12] Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks & Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583 [13] Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial & Management Optimization, 2019, 15 (1) : 235-259. doi: 10.3934/jimo.2018041 [14] Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 [15] Kai Wang, Lingling Xu, Deren Han. A new parallel splitting descent method for structured variational inequalities. Journal of Industrial & Management Optimization, 2014, 10 (2) : 461-476. doi: 10.3934/jimo.2014.10.461 [16] Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 [17] Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173 [18] Nobu Kishimoto. Resonant decomposition and the $I$-method for the two-dimensional Zakharov system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4095-4122. doi: 10.3934/dcds.2013.33.4095 [19] Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297 [20] Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

2018 Impact Factor: 1.025