American Institute of Mathematical Sciences

January  2017, 13(1): 375-397. doi: 10.3934/jimo.2016022

Markowitz's mean-variance optimization with investment and constrained reinsurance

 Centre for Actuarial Studies, Department of Economics, The University of Melbourne, VIC, 3010, Australia

* Corresponding author: Ping chen

Received  January 2015 Published  March 2016

This paper deals with the optimal investment-reinsurance strategy for an insurer under the criterion of mean-variance. The risk process is the diffusion approximation of a compound Poisson process and the insurer can invest its wealth into a financial market consisting of one risk-free asset and one risky asset, while short-selling of the risky asset is prohibited. On the side of reinsurance, we require that the proportion of insurer's retained risk belong to $[0, 1]$, is adopted. According to the dynamic programming in stochastic optimal control, the resulting Hamilton-Jacobi-Bellman (HJB) equation may not admit a classical solution. In this paper, we construct a viscosity solution for the HJB equation, and based on this solution we find closed form expressions of efficient strategy and efficient frontier when the expected terminal wealth is greater than a certain level. For other possible expected returns, we apply numerical methods to analyse the efficient frontier. Several numerical examples and comparisons between models with constrained and unconstrained proportional reinsurance are provided to illustrate our results.

Citation: Nan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Markowitz's mean-variance optimization with investment and constrained reinsurance. Journal of Industrial & Management Optimization, 2017, 13 (1) : 375-397. doi: 10.3934/jimo.2016022
References:

show all references

References:
the region of $\mathcal{A}_i,\: i=1,2,3,4.$ For the region $\mathcal{A}_4$, we can deem it as a family of curves $\{ \mathcal{C}_k \} _{0\leq k\leq 1}$ (i.e., the red dot curve) and construct a solution to the HJB equation on each curve
The value of $V_\beta (0,X_0)$ in Example 1
The value of $V_\beta (0,X_0)$ in Example 2
Comparisons of efficient frontiers between models with constrained and unconstrained reinsurance
Piecewise and global maximum values of $V_\beta (0,X_0)$ under different distributions, if $\lambda=10$, $\theta=0.3$, $\eta=0.2$, $\mu=0.06$, $r=0.04$, $\sigma=1$, $T=100$ and $X_0=50$, which lead to $d_1 < d_2$ in all the following distributions
 $\max \limits_{\beta \leq \beta_0} V_\beta$ $\max \limits_{\beta_0 \leq \beta \leq \beta_1}\!\!\! V_\beta$ $\max \limits_{\beta_1 \leq \beta \leq \beta_2}\!\!\! V_\beta$ $\max \limits_{\beta \geq \beta_2} V_\beta$ $V_{\beta^*}$ $V_{\beta_0}$ $V_{\hat{\beta}^*}$ $V_{\beta_1}$ $V_{\overline{\beta}^*}$ $V_{\beta_2}$ ${ U(0,1)}$($\!\times\! 1\!0^6$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -4.1533 -0.0037 -0.0037 $\underline {{\mathbf{1}}{\mathbf{.7}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{26}}}}}$ -0.0037 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.9965 $\underline {{\mathbf{6}}{\mathbf{.5318}}}$ -0.8962 N/A -1.1406 $d\!=\!\frac{d_2+\overline{d}}{2} \$ $\underline {{\mathbf{0}}{\mathbf{.2173}}}$ 0.1306 0.1306 -3.8089 N/A -4.2972 ${Exp(1)}$($\!\times \!1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -1.6809 -0.0033 -0.0033 $\underline {{\mathbf{9}}{\mathbf{.1}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{16}}}}}$ -0.0033 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.3927 $\underline {{\mathbf{77}}{\mathbf{.814}}}$ -0.3368 N/A -0.4836 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.1596}}$ 0.0816 0.0816 -1.4784 N/A -1.7716 ${\Gamma(2,1)}$($\!\times\! 1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -6.6657 -0.0075 -0.0075 $\underline {{\mathbf{6}}{\mathbf{.3}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{22}}}}}$ -0.0075 $d\!=\!\frac{d_1+d_2}{2}$ N/A -1.5892 $\underline {{\mathbf{144}}{\mathbf{.61}}}$ -1.4119 N/A -1.8521 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.4130}}$ 0.2376 0.2376 -6.0489 N/A -6.9279 ${Erlang(3,\!0.5)}$($\!\times \!1\!0^8$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -5.9556 -0.0037 -0.0037 $\underline {{\mathbf{2}}{\mathbf{.3}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{30}}}}}$ -0.0037 $d\!=\!\frac{d_1+d_2}{2}$ N/A -1.4403 $\underline {{\mathbf{633}}{\mathbf{.53}}}$ -1.3172 N/A -1.6104 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.2413}}$ 0.1546 0.1546 -5.5396 N/A -6.1254 ${Pareto(3,1)}$($\!\times \!1\!0^6$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -4.3176 -0.0331 -0.0331 $\underline {{\mathbf{5}}{\mathbf{.4}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{6}}}}}$ -0.0331 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.9050 $\underline {{\mathbf{245}}{\mathbf{.60}}}$ -0.6891 N/A -1.4259 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{1}}{\mathbf{.2362}}$ 0.4564 -3.3675 -3.3675 N/A -4.8359 ${N(1,2^2)}$($\!\times\! 1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -1.7430 -0.0207 -0.0207 $\underline {{\mathbf{0}}{\mathbf{.0030}}}$ -0.0207 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.3394 $\underline {{\mathbf{2611}}{\mathbf{.7}}}$ -0.2474 N/A -0.6164 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.7276}}$ 0.2403 0.2403 -1.2836 N/A -2.0184 ${LN(1,1)}$($\!\times\! 1\!0^8$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -3.4138 -0.0123 -0.0123 $\underline {{\mathbf{4}}{\mathbf{.9}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{9}}}}}$ -0.0123 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.7710 $\underline {{\mathbf{4187}}{\mathbf{.9}}}$ -0.6309 N/A -1.0322 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.5216}}$ 0.2323 0.2323 -2.8733 N/A -3.6740 ${NB(1,0.6)}$($\!\times\! 1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -3.8213 -0.0132 -0.0132 $\underline {{\mathbf{2}}{\mathbf{.8}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{10}}}}}$ -0.0132 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.8653 $\underline {{\mathbf{438}}{\mathbf{.12}}}$ -0.7103 N/A -1.1514 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.5664}}$ 0.2545 0.2545 -3.2263 N/A -4.1063
 $\max \limits_{\beta \leq \beta_0} V_\beta$ $\max \limits_{\beta_0 \leq \beta \leq \beta_1}\!\!\! V_\beta$ $\max \limits_{\beta_1 \leq \beta \leq \beta_2}\!\!\! V_\beta$ $\max \limits_{\beta \geq \beta_2} V_\beta$ $V_{\beta^*}$ $V_{\beta_0}$ $V_{\hat{\beta}^*}$ $V_{\beta_1}$ $V_{\overline{\beta}^*}$ $V_{\beta_2}$ ${ U(0,1)}$($\!\times\! 1\!0^6$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -4.1533 -0.0037 -0.0037 $\underline {{\mathbf{1}}{\mathbf{.7}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{26}}}}}$ -0.0037 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.9965 $\underline {{\mathbf{6}}{\mathbf{.5318}}}$ -0.8962 N/A -1.1406 $d\!=\!\frac{d_2+\overline{d}}{2} \$ $\underline {{\mathbf{0}}{\mathbf{.2173}}}$ 0.1306 0.1306 -3.8089 N/A -4.2972 ${Exp(1)}$($\!\times \!1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -1.6809 -0.0033 -0.0033 $\underline {{\mathbf{9}}{\mathbf{.1}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{16}}}}}$ -0.0033 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.3927 $\underline {{\mathbf{77}}{\mathbf{.814}}}$ -0.3368 N/A -0.4836 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.1596}}$ 0.0816 0.0816 -1.4784 N/A -1.7716 ${\Gamma(2,1)}$($\!\times\! 1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -6.6657 -0.0075 -0.0075 $\underline {{\mathbf{6}}{\mathbf{.3}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{22}}}}}$ -0.0075 $d\!=\!\frac{d_1+d_2}{2}$ N/A -1.5892 $\underline {{\mathbf{144}}{\mathbf{.61}}}$ -1.4119 N/A -1.8521 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.4130}}$ 0.2376 0.2376 -6.0489 N/A -6.9279 ${Erlang(3,\!0.5)}$($\!\times \!1\!0^8$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -5.9556 -0.0037 -0.0037 $\underline {{\mathbf{2}}{\mathbf{.3}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{30}}}}}$ -0.0037 $d\!=\!\frac{d_1+d_2}{2}$ N/A -1.4403 $\underline {{\mathbf{633}}{\mathbf{.53}}}$ -1.3172 N/A -1.6104 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.2413}}$ 0.1546 0.1546 -5.5396 N/A -6.1254 ${Pareto(3,1)}$($\!\times \!1\!0^6$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -4.3176 -0.0331 -0.0331 $\underline {{\mathbf{5}}{\mathbf{.4}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{6}}}}}$ -0.0331 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.9050 $\underline {{\mathbf{245}}{\mathbf{.60}}}$ -0.6891 N/A -1.4259 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{1}}{\mathbf{.2362}}$ 0.4564 -3.3675 -3.3675 N/A -4.8359 ${N(1,2^2)}$($\!\times\! 1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -1.7430 -0.0207 -0.0207 $\underline {{\mathbf{0}}{\mathbf{.0030}}}$ -0.0207 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.3394 $\underline {{\mathbf{2611}}{\mathbf{.7}}}$ -0.2474 N/A -0.6164 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.7276}}$ 0.2403 0.2403 -1.2836 N/A -2.0184 ${LN(1,1)}$($\!\times\! 1\!0^8$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -3.4138 -0.0123 -0.0123 $\underline {{\mathbf{4}}{\mathbf{.9}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{9}}}}}$ -0.0123 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.7710 $\underline {{\mathbf{4187}}{\mathbf{.9}}}$ -0.6309 N/A -1.0322 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.5216}}$ 0.2323 0.2323 -2.8733 N/A -3.6740 ${NB(1,0.6)}$($\!\times\! 1\!0^7$ except underline) $d\!=\!\frac{d_0+d_1}{2}$ N/A -3.8213 -0.0132 -0.0132 $\underline {{\mathbf{2}}{\mathbf{.8}}{\mathbf{ \times }}{\mathbf{1}}{{\mathbf{0}}^{{\mathbf{ - }}{\mathbf{10}}}}}$ -0.0132 $d\!=\!\frac{d_1+d_2}{2}$ N/A -0.8653 $\underline {{\mathbf{438}}{\mathbf{.12}}}$ -0.7103 N/A -1.1514 $d\!=\!\frac{d_2+\overline{d}}{2} \$ ${\mathbf{0}}{\mathbf{.5664}}$ 0.2545 0.2545 -3.2263 N/A -4.1063
Piecewise and global maximum values of $V_\beta (0,X_0)$ under different distributions, if $\lambda=1$, $\theta=0.25$, $\eta=0.2$, $\mu=0.12$, $r=0.1$, $\sigma=1$, $T=100$ and $X_0=50$, which lead to $d_1 > d_2$ in all the following distributions
 $\mathop {\max {V_\beta }}\limits_{\beta \leqslant {\beta _0}}$ $\mathop {\max {V_\beta }}\limits_{{\beta _{0 \leqslant }}\beta \leqslant {\beta _1}}$ $\mathop {\max {V_\beta }}\limits_{{\beta _{1 \leqslant }}\beta \leqslant {\beta _2}}$ $\mathop {\max {V_\beta }}\limits_{\beta \geqslant {\beta _2}}$ $V_{\beta^*}$ $V_{\beta_0}$ $V_{\hat{\beta}^*}$ $V_{\beta_1}$ $V_{\overline{\beta}^*}$ $V_{\beta_2}$ ${U(0,1)}$($\times 10^9$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.9978 -0.9212 -1.8896 ${\mathbf{0}}{\mathbf{.0020}}$ -0.2225 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.8971 ${\mathbf{0}}{\mathbf{.9296}}$ -0.8106 0.0080 -0.8842 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{7}}{\mathbf{.4450}}$ 2.3088 2.3166 -0.1859 0.0173 -1.9383 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{49}}{\mathbf{.763}}$ 3.8965 3.8965 -0.1519 N/A -5.2191 ${Exp(1)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.5612 -0.5220 -1.9780 ${\mathbf{0}}{\mathbf{.0042}}$ -0.0960 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.5807 ${\mathbf{0}}{\mathbf{.6015}}$ -1.1763 0.0169 -0.3828 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{9}}{\mathbf{.3795}}$ 2.1070 2.1098 -0.2391 0.0587 -1.3311 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{51}}{\mathbf{.957}}$ 3.3527 3.3527 0.0744 N/A -4.0010 ${\Gamma(2,1)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.7584 -1.6274 -4.0605 ${\mathbf{0}}{\mathbf{.0055}}$ -4.0605 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.6593 ${\mathbf{1}}{\mathbf{.7189}}$ -1.9674 0.0219 -1.4494 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{17}}{\mathbf{.205}}$ 4.7277 4.7395 -0.4418 0.0548 -3.6266 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{106}}{\mathbf{.69}}$ 7.7884 7.7884 -0.1778 N/A -10.075 ${Erlang(3,\!0.5)}$($\times 10^{11}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.2426 -1.2423 -1.6745 ${\mathbf{0}}{\mathbf{.0011}}$ -0.3123 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.0630 ${\mathbf{1}}{\mathbf{.1002}}$ -0.5359 0.0043 -1.2483 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{5}}{\mathbf{.6680}}$ 2.2385 2.2512 -0.1273 0.0077 -2.2031 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{44}}{\mathbf{.398}}$ 3.9729 3.9727 -0.2576 N/A -5.6482 ${Pareto(3,1)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.2622 -0.2459 -1.9025 ${\mathbf{0}}{\mathbf{.0075}}$ -0.0297 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.3471 ${\text{0}}{\text{.3584}}$ -1.3874 0.0297 -0.1179 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{9}}{\mathbf{.0697}}$ 1.8675 1.8690 -0.1602 0.1934 -0.7671 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{51}}{\mathbf{.540}}$ 3.1176 3.1176 0.6238 N/A -2.9664 ${N(1,2^2)}$($\times 10^{11}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.1294 -0.1215 -1.1009 ${\mathbf{0}}{\mathbf{.0050}}$ -0.0131 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.1890 ${\mathbf{0}}{\mathbf{.1948}}$ -0.8222 0.0198 -0.0522 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{4}}{\mathbf{.9701}}$ 1.0826 1.0836 -0.0647 0.1456 -0.3834 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{30}}{\mathbf{.540}}$ 1.9036 1.9036 0.5233 N/A -1.6600 ${LN(1,1)}$($\times 10^{11}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.4785 -1.3810 -7.5183 ${\mathbf{0}}{\mathbf{.0223}}$ -0.2086 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.7070 ${\mathbf{1}}{\mathbf{.7662}}$ -5.0451 0.0890 -0.8339 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{37}}{\mathbf{.143}}$ 7.5727 7.5794 -0.8606 0.4226 -3.9611 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{198}}{\mathbf{.97}}$ 12.037 12.037 1.0593 N/A -13.110 ${NB(1,0.6)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.6279 -1.5202 -8.1096 ${\mathbf{0}}{\mathbf{.0236}}$ -0.2324 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.8624 ${\mathbf{1}}{\mathbf{.9273}}$ -5.4140 0.0942 -0.9276 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{40}}{\mathbf{.041}}$ 8.1885 8.1958 -0.9357 0.4402 -4.3335 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{214}}{\mathbf{.47}}$ 13.003 13.003 1.0824 N/A -14.249
 $\mathop {\max {V_\beta }}\limits_{\beta \leqslant {\beta _0}}$ $\mathop {\max {V_\beta }}\limits_{{\beta _{0 \leqslant }}\beta \leqslant {\beta _1}}$ $\mathop {\max {V_\beta }}\limits_{{\beta _{1 \leqslant }}\beta \leqslant {\beta _2}}$ $\mathop {\max {V_\beta }}\limits_{\beta \geqslant {\beta _2}}$ $V_{\beta^*}$ $V_{\beta_0}$ $V_{\hat{\beta}^*}$ $V_{\beta_1}$ $V_{\overline{\beta}^*}$ $V_{\beta_2}$ ${U(0,1)}$($\times 10^9$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.9978 -0.9212 -1.8896 ${\mathbf{0}}{\mathbf{.0020}}$ -0.2225 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.8971 ${\mathbf{0}}{\mathbf{.9296}}$ -0.8106 0.0080 -0.8842 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{7}}{\mathbf{.4450}}$ 2.3088 2.3166 -0.1859 0.0173 -1.9383 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{49}}{\mathbf{.763}}$ 3.8965 3.8965 -0.1519 N/A -5.2191 ${Exp(1)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.5612 -0.5220 -1.9780 ${\mathbf{0}}{\mathbf{.0042}}$ -0.0960 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.5807 ${\mathbf{0}}{\mathbf{.6015}}$ -1.1763 0.0169 -0.3828 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{9}}{\mathbf{.3795}}$ 2.1070 2.1098 -0.2391 0.0587 -1.3311 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{51}}{\mathbf{.957}}$ 3.3527 3.3527 0.0744 N/A -4.0010 ${\Gamma(2,1)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.7584 -1.6274 -4.0605 ${\mathbf{0}}{\mathbf{.0055}}$ -4.0605 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.6593 ${\mathbf{1}}{\mathbf{.7189}}$ -1.9674 0.0219 -1.4494 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{17}}{\mathbf{.205}}$ 4.7277 4.7395 -0.4418 0.0548 -3.6266 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{106}}{\mathbf{.69}}$ 7.7884 7.7884 -0.1778 N/A -10.075 ${Erlang(3,\!0.5)}$($\times 10^{11}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.2426 -1.2423 -1.6745 ${\mathbf{0}}{\mathbf{.0011}}$ -0.3123 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.0630 ${\mathbf{1}}{\mathbf{.1002}}$ -0.5359 0.0043 -1.2483 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{5}}{\mathbf{.6680}}$ 2.2385 2.2512 -0.1273 0.0077 -2.2031 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{44}}{\mathbf{.398}}$ 3.9729 3.9727 -0.2576 N/A -5.6482 ${Pareto(3,1)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.2622 -0.2459 -1.9025 ${\mathbf{0}}{\mathbf{.0075}}$ -0.0297 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.3471 ${\text{0}}{\text{.3584}}$ -1.3874 0.0297 -0.1179 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{9}}{\mathbf{.0697}}$ 1.8675 1.8690 -0.1602 0.1934 -0.7671 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{51}}{\mathbf{.540}}$ 3.1176 3.1176 0.6238 N/A -2.9664 ${N(1,2^2)}$($\times 10^{11}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -0.1294 -0.1215 -1.1009 ${\mathbf{0}}{\mathbf{.0050}}$ -0.0131 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 0.1890 ${\mathbf{0}}{\mathbf{.1948}}$ -0.8222 0.0198 -0.0522 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{4}}{\mathbf{.9701}}$ 1.0826 1.0836 -0.0647 0.1456 -0.3834 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{30}}{\mathbf{.540}}$ 1.9036 1.9036 0.5233 N/A -1.6600 ${LN(1,1)}$($\times 10^{11}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.4785 -1.3810 -7.5183 ${\mathbf{0}}{\mathbf{.0223}}$ -0.2086 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.7070 ${\mathbf{1}}{\mathbf{.7662}}$ -5.0451 0.0890 -0.8339 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{37}}{\mathbf{.143}}$ 7.5727 7.5794 -0.8606 0.4226 -3.9611 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{198}}{\mathbf{.97}}$ 12.037 12.037 1.0593 N/A -13.110 ${NB(1,0.6)}$($\times 10^{10}$) $d\!=\!\frac{d_0+d_2}{2}$ N/A -1.6279 -1.5202 -8.1096 ${\mathbf{0}}{\mathbf{.0236}}$ -0.2324 $d\!=\!\!d_3\!\!-\!\!1\!00$ N/A 1.8624 ${\mathbf{1}}{\mathbf{.9273}}$ -5.4140 0.0942 -0.9276 $d\!=\!\frac{d_1+d_2}{2}$ ${\mathbf{40}}{\mathbf{.041}}$ 8.1885 8.1958 -0.9357 0.4402 -4.3335 $d\!=\!\frac{d_1+\overline{d}}{2}$ ${\mathbf{214}}{\mathbf{.47}}$ 13.003 13.003 1.0824 N/A -14.249
 [1] Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413 [2] Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483 [3] Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418 [4] Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521 [5] Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187 [6] Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643 [7] Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229 [8] Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018166 [9] Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018189 [10] Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018180 [11] Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045 [12] Torsten Görner, Ralf Hielscher, Stefan Kunis. Efficient and accurate computation of spherical mean values at scattered center points. Inverse Problems & Imaging, 2012, 6 (4) : 645-661. doi: 10.3934/ipi.2012.6.645 [13] Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749 [14] Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2015-2031. doi: 10.3934/jimo.2017029 [15] Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic & Related Models, 2016, 9 (2) : 373-391. doi: 10.3934/krm.2016.9.373 [16] Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185 [17] Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons. Mathematical Biosciences & Engineering, 2016, 13 (3) : 509-520. doi: 10.3934/mbe.2016004 [18] Ambroise Vest. On the structural properties of an efficient feedback law. Evolution Equations & Control Theory, 2013, 2 (3) : 543-556. doi: 10.3934/eect.2013.2.543 [19] Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211 [20] Linghua Kong, Liqun Kuang, Tingchun Wang. Efficient numerical schemes for two-dimensional Ginzburg-Landau equation in superconductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2019141

2018 Impact Factor: 1.025