American Institute of Mathematical Sciences

January  2017, 13(1): 223-235. doi: 10.3934/jimo.2016013

Talent hold cost minimization in film production

 1 Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 2 Institute of Information Management, National Chiao Tung University, Hsinchu 300, Taiwan

* Corresponding author: B. M. T. Lin

Received  May 2015 Revised  December 2015 Published  March 2016

This paper investigates the talent scheduling problem in film production, which is known as rehearsal scheduling in music and dance performances. The first lower bound on the minimization of talent hold cost is based upon the outside-in branching strategy. We introduce two approaches to add extra terms for tightening the lower bound. The first approach is to formulate a maximum weighted matching problem. The second approach is to retrieve structural information and solve a maximum weighted 3-grouping problem. We make two contributions: First, our results can fathom the matrix of a given partial schedule. Second, our second approach is free from the requirement to schedule some shooting days in advance for providing anchoring information as in the other approaches, i.e., a lower bound can be computed once the input instance is given. The lower bound can fit different branching strategies. Moreover, the second contribution provides a state-of-the-art research result for this problem. Computational experiments confirm that the new bounds are much tighter than the original one.

Citation: Tai Chiu Edwin Cheng, Bertrand Miao-Tsong Lin, Hsiao-Lan Huang. Talent hold cost minimization in film production. Journal of Industrial & Management Optimization, 2017, 13 (1) : 223-235. doi: 10.3934/jimo.2016013
References:

show all references

References:
Day-out-of-days matrix
Areas resolved by different lower bounds
Partial schedule with days d2, d3, d6, d7 fixed
Illustration of Lemma 3.1
Illustration of Max-w-matching(Φ(P))
Analysis of xi1, i2, i3 in Lemma 4.1
Analysis of yi1, i2, i3 in Lemma 4.1
Development of xi1, i2, i3 in Lemma 4.1
 Arrangement Minimum hold cost x-1: $\beta_{\widetilde{i_1},{i_2},{i_3}}---\beta_{\widetilde{i_1},{i_2},{i_3}}$ $c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|+c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|$ x-2: $\beta_{{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},\widetilde{i_2},{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|+c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|$ x-3: $\beta_{{i_1},{i_2},\widetilde{i_3}}---\beta_{{i_1},{i_2},\widetilde{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|+c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|$ x-4: $\beta_{\widetilde{i_1},{i_2},{i_3}}---\beta_{{i_1},\widetilde{i_2},{i_3}}$ $c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|$ x-5: $\beta_{\widetilde{i_1},{i_2},{i_3}}---\beta_{{i_1},{i_2},\widetilde{i_3}}$ $c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|$ x-6: $\beta_{{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},{i_2},\widetilde{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|$ $\displaystyle x_{i_1,i_2,i_3}=\min\Big\{c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|,c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|,c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|\Big\}$
 Arrangement Minimum hold cost x-1: $\beta_{\widetilde{i_1},{i_2},{i_3}}---\beta_{\widetilde{i_1},{i_2},{i_3}}$ $c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|+c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|$ x-2: $\beta_{{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},\widetilde{i_2},{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|+c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|$ x-3: $\beta_{{i_1},{i_2},\widetilde{i_3}}---\beta_{{i_1},{i_2},\widetilde{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|+c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|$ x-4: $\beta_{\widetilde{i_1},{i_2},{i_3}}---\beta_{{i_1},\widetilde{i_2},{i_3}}$ $c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|$ x-5: $\beta_{\widetilde{i_1},{i_2},{i_3}}---\beta_{{i_1},{i_2},\widetilde{i_3}}$ $c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|$ x-6: $\beta_{{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},{i_2},\widetilde{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|$ $\displaystyle x_{i_1,i_2,i_3}=\min\Big\{c_{i_1}|\beta_{\widetilde{i_1},{i_2},{i_3}}|,c_{i_2}|\beta_{{i_1},\widetilde{i_2},{i_3}}|,c_{i_3}|\beta_{{i_1},{i_2},\widetilde{i_3}}|\Big\}$
Analysis of yi1, i2, i3 for actors ai1, ai2, and ai3
 Arrangement Lower bound of costs y-1: $\beta_{{i_1},{i_2},{i_3}}---\beta_{{i_1},{i_2},{i_3}}$ $c_{i_1}(|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|+|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|)+ c_{i_2}(|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|+|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|)$ $c_{i_3}(|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|+|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|)$ y-2: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}$ $c_{i_3}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-3: $\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}---\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}$ $c_{i_2}|\beta_{\widetilde{i_1},\widetilde{i_2}{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-4: $\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}---\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}\cup \beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|$ y-5: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}$ $\min\{c_{i_2},c_{i_3}\}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$, if $|\beta_{{i_1},{i_2},{i_3}}|>0$; 0, otherwise. y-6: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}$ $\min\{c_{i_1},c_{i_3}\}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|$, if $|\beta_{{i_1},{i_2},{i_3}}|>0$; 0, otherwise. y-7: $\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}---\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}$ $\min\{c_{i_1},c_{i_2}\}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|$, if $|\beta_{{i_1},{i_2},{i_3}}|>0$; 0, otherwise. y-8: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},{i_2}{i_3}}$ $\min\{c_{i_1}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|, c_{i_2}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|\}+c_{i_3}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-9: $\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}---\beta_{{i_1},{i_2},{i_3}}$ $\min\{c_{i_1}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|, c_{i_3}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|\}+c_{i_2}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-10: $\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}---\beta_{{i_1},{i_2},{i_3}}$ $\min\{c_{i_3}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|, c_{i_2}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|\}+ c_{i_1}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}\cup \beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|$ $\displaystyle y_{i_1,i_2,i_3}=\min\Big\{\min\{c_{i_2},c_{i_3}\}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|, \min\{c_{i_1},c_{i_3}\}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|, \min\{c_{i_1},c_{i_2}\}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|\Big\}$
 Arrangement Lower bound of costs y-1: $\beta_{{i_1},{i_2},{i_3}}---\beta_{{i_1},{i_2},{i_3}}$ $c_{i_1}(|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|+|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|)+ c_{i_2}(|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|+|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|)$ $c_{i_3}(|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|+|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|)$ y-2: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}$ $c_{i_3}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-3: $\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}---\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}$ $c_{i_2}|\beta_{\widetilde{i_1},\widetilde{i_2}{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-4: $\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}---\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}$ $c_{i_1}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}\cup \beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|$ y-5: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}$ $\min\{c_{i_2},c_{i_3}\}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$, if $|\beta_{{i_1},{i_2},{i_3}}|>0$; 0, otherwise. y-6: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}$ $\min\{c_{i_1},c_{i_3}\}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|$, if $|\beta_{{i_1},{i_2},{i_3}}|>0$; 0, otherwise. y-7: $\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}---\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}$ $\min\{c_{i_1},c_{i_2}\}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|$, if $|\beta_{{i_1},{i_2},{i_3}}|>0$; 0, otherwise. y-8: $\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}---\beta_{{i_1},{i_2}{i_3}}$ $\min\{c_{i_1}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|, c_{i_2}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|\}+c_{i_3}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-9: $\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}---\beta_{{i_1},{i_2},{i_3}}$ $\min\{c_{i_1}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|, c_{i_3}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|\}+c_{i_2}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}\cup \beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|$ y-10: $\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}---\beta_{{i_1},{i_2},{i_3}}$ $\min\{c_{i_3}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|, c_{i_2}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|\}+ c_{i_1}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}\cup \beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|$ $\displaystyle y_{i_1,i_2,i_3}=\min\Big\{\min\{c_{i_2},c_{i_3}\}|\beta_{{i_1},\widetilde{i_2},\widetilde{i_3}}|, \min\{c_{i_1},c_{i_3}\}|\beta_{\widetilde{i_1},{i_2},\widetilde{i_3}}|, \min\{c_{i_1},c_{i_2}\}|\beta_{\widetilde{i_1},\widetilde{i_2},{i_3}}|\Big\}$
Lower bounds subject to outside-in branching scheme
 Density lower bound k = 1 k = 3 k = 5 k = 10 value ratio value ratio value ratio value ratio 0.1 LB1 11,413 1.00 106,365 1.00 241,830 1.00 515,424 1.00 LB2 22,297 1.95 129,686 1.22 265,002 1.10 530,076 1.03 LB3 50,023 4.38 143,619 1.35 272,854 1.13 531,030 1.03 0.2 LB1 43,299 1.00 282,387 1.00 462,986 1.00 723,402 1.00 LB2 81,428 1.88 324,608 1.15 496,798 1.07 727,837 1.01 LB3 112,749 2.60 333,710 1.18 498,486 1.08 727,837 1.01 0.3 LB1 102,531 1.00 393,930 1.00 564,109 1.00 693,117 1.00 LB2 160,744 1.57 439,086 1.11 585,516 1.04 693,716 1.00 LB3 188,908 1.84 442,229 1.12 585,516 1.04 693,716 1.00
 Density lower bound k = 1 k = 3 k = 5 k = 10 value ratio value ratio value ratio value ratio 0.1 LB1 11,413 1.00 106,365 1.00 241,830 1.00 515,424 1.00 LB2 22,297 1.95 129,686 1.22 265,002 1.10 530,076 1.03 LB3 50,023 4.38 143,619 1.35 272,854 1.13 531,030 1.03 0.2 LB1 43,299 1.00 282,387 1.00 462,986 1.00 723,402 1.00 LB2 81,428 1.88 324,608 1.15 496,798 1.07 727,837 1.01 LB3 112,749 2.60 333,710 1.18 498,486 1.08 727,837 1.01 0.3 LB1 102,531 1.00 393,930 1.00 564,109 1.00 693,117 1.00 LB2 160,744 1.57 439,086 1.11 585,516 1.04 693,716 1.00 LB3 188,908 1.84 442,229 1.12 585,516 1.04 693,716 1.00
Lower bounds subject to sequential branching
 Density lower bound k = 1 k = 3 k = 5 k = 10 value ratio value ratio value ratio value ratio 0.1 LB1 0 N/A 7,764 1.00 22,918 1.00 87,358 1.00 LB2 6,541 N/A 26,995 3.48 51,991 2.27 127,306 1.46 LB3 37,745 N/A 49,103 6.32 67,435 2.94 132,759 1.52 0.2 LB1 0 N/A 11,737 1.00 35,605 1.00 11,7147 1.00 LB2 24,446 N/A 74,227 6.32 113,462 3.19 206,271 1.76 LB3 71,501 N/A 96,454 8.22 125,353 3.52 212,210 1.81 0.3 LB1 0 N/A 14,769 1.00 39,563 1.00 113,626 1.00 LB2 44,348 N/A 119,872 8.12 275,254 6.96 236,553 2.08 LB3 95,967 N/A 135,891 9.20 281,540 7.12 236,553 2.08
 Density lower bound k = 1 k = 3 k = 5 k = 10 value ratio value ratio value ratio value ratio 0.1 LB1 0 N/A 7,764 1.00 22,918 1.00 87,358 1.00 LB2 6,541 N/A 26,995 3.48 51,991 2.27 127,306 1.46 LB3 37,745 N/A 49,103 6.32 67,435 2.94 132,759 1.52 0.2 LB1 0 N/A 11,737 1.00 35,605 1.00 11,7147 1.00 LB2 24,446 N/A 74,227 6.32 113,462 3.19 206,271 1.76 LB3 71,501 N/A 96,454 8.22 125,353 3.52 212,210 1.81 0.3 LB1 0 N/A 14,769 1.00 39,563 1.00 113,626 1.00 LB2 44,348 N/A 119,872 8.12 275,254 6.96 236,553 2.08 LB3 95,967 N/A 135,891 9.20 281,540 7.12 236,553 2.08
 [1] Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165 [2] Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499 [3] Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35 [4] Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55 [5] Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 [6] Geng Chen, Ronghua Pan, Shengguo Zhu. A polygonal scheme and the lower bound on density for the isentropic gas dynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4259-4277. doi: 10.3934/dcds.2019172 [7] Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767 [8] Lihui Zhang, Xin Zou, Jianxun Qi. A trade-off between time and cost in scheduling repetitive construction projects. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1423-1434. doi: 10.3934/jimo.2015.11.1423 [9] Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97 [10] Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic & Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281 [11] Claude Carlet, Brahim Merabet. Asymptotic lower bound on the algebraic immunity of random balanced multi-output Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 197-217. doi: 10.3934/amc.2013.7.197 [12] Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209 [13] Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 [14] Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems & Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527 [15] R. Enkhbat , N. Tungalag, A. S. Strekalovsky. Pseudoconvexity properties of average cost functions. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 233-236. doi: 10.3934/naco.2015.5.233 [16] Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301 [17] Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial & Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685 [18] Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169 [19] Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002 [20] Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403-409. doi: 10.3934/proc.2005.2005.403

2018 Impact Factor: 1.025

Tools

Article outline

Figures and Tables