# American Institute of Mathematical Sciences

January  2017, 13(1): 207-222. doi: 10.3934/jimo.2016012

## The finite-time ruin probability for an inhomogeneous renewal risk model

 Faculty of Mathematics and and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania

* Corresponding author: jonas.siaulys@mif.vu.lt

Received  March 2015 Revised  December 2015 Published  March 2016

Fund Project: The second author is supported by a grant No. MIP-13079 from the Research Council of Lithuania

In the paper, we give an asymptotic formula for the finite-time ruin probability in a generalized renewal risk model. We consider the renewal risk model with independent strongly subexponential claim sizes and independent not necessarily identically distributed inter occurrence times having finite variances. We find out that the asymptotic formula for the finite-time ruin probability is insensitive to the homogeneity of inter-occurrence times.

Citation: Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012
##### References:
 [1] E. Sparre Andersen, On the collective theory of risk in case of contagion between claims, Transactions of the XV-th International Congress of Actuaries, 2 (1957).Google Scholar [2] I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys, A Lundberg-type inequality for an inhomogeneous renewal risk model, Modern Stochastics: Theory and Applications, 2 (2015), 173-184. Google Scholar [3] E. Bernackaitė and J. Šiaulys, The exponential moment tail of inhomogeneous renewal process, Statistics and Probability Letters, 97 (2015), 9-15. doi: 10.1016/j.spl.2014.10.018. Google Scholar [4] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434. Google Scholar [5] V. P. Chistyakov (Čistjakov), A theorem on sums of independent positive random variables and its applications to branching processes, Theory of Probability and Its Applications (Teoriya Veroyatnostei i ee Primeneniya), 9 (1964), 640-648. Google Scholar [6] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, New York, 1997. doi: 10.1007/978-3-642-33483-2. Google Scholar [7] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1 (1984), 55-72. doi: 10.1016/0167-6687(82)90021-X. Google Scholar [8] S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, 2011. doi: 10.1007/978-1-4419-9473-8. Google Scholar [9] R. Kaas and Q. Tang, Note on the tail behavior of random walk maxima with heavy tails and negative drift, North American Actuarial Journal, 7 (2003), 57-61. doi: 10.1080/10920277.2003.10596103. Google Scholar [10] J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability, Lithuanian Mathematical Journal, 49 (2009), 55-61. doi: 10.1007/s10986-009-9032-1. Google Scholar [11] D. Korshunov, Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory of Probability and its Applications, 46 (2002), 355-366. doi: 10.1137/S0040585X97979019. Google Scholar [12] R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk models, Applied Stochastic Models in Bussines and Industry, 25 (2009), 309-321. doi: 10.1002/asmb.747. Google Scholar [13] V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995. Google Scholar [14] E. J. G. Pitman, Subexponential distribution functions, Journal of Australian Mathematical Society (Series A), 29 (1980), 337-347. doi: 10.1017/S1446788700021340. Google Scholar [15] A. N. Shiryaev, Probability, Springer, 1996. doi: 10.1007/978-1-4757-2539-1. Google Scholar [16] W. L. Smith, On the elementary renewal theorem for non -identicaly distributed variables, Pacific Journal of Mathematics, 14 (1964), 673-699. doi: 10.2140/pjm.1964.14.673. Google Scholar [17] Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stochastic Models, 20 (2004), 281-297. doi: 10.1081/STM-200025739. Google Scholar [18] N. Veraverbeke, Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Processes and their Applications, 5 (1977), 27-37. doi: 10.1016/0304-4149(77)90047-3. Google Scholar [19] Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223. doi: 10.1016/j.jmaa.2012.01.025. Google Scholar

show all references

##### References:
 [1] E. Sparre Andersen, On the collective theory of risk in case of contagion between claims, Transactions of the XV-th International Congress of Actuaries, 2 (1957).Google Scholar [2] I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys, A Lundberg-type inequality for an inhomogeneous renewal risk model, Modern Stochastics: Theory and Applications, 2 (2015), 173-184. Google Scholar [3] E. Bernackaitė and J. Šiaulys, The exponential moment tail of inhomogeneous renewal process, Statistics and Probability Letters, 97 (2015), 9-15. doi: 10.1016/j.spl.2014.10.018. Google Scholar [4] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434. Google Scholar [5] V. P. Chistyakov (Čistjakov), A theorem on sums of independent positive random variables and its applications to branching processes, Theory of Probability and Its Applications (Teoriya Veroyatnostei i ee Primeneniya), 9 (1964), 640-648. Google Scholar [6] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, New York, 1997. doi: 10.1007/978-3-642-33483-2. Google Scholar [7] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1 (1984), 55-72. doi: 10.1016/0167-6687(82)90021-X. Google Scholar [8] S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, 2011. doi: 10.1007/978-1-4419-9473-8. Google Scholar [9] R. Kaas and Q. Tang, Note on the tail behavior of random walk maxima with heavy tails and negative drift, North American Actuarial Journal, 7 (2003), 57-61. doi: 10.1080/10920277.2003.10596103. Google Scholar [10] J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability, Lithuanian Mathematical Journal, 49 (2009), 55-61. doi: 10.1007/s10986-009-9032-1. Google Scholar [11] D. Korshunov, Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory of Probability and its Applications, 46 (2002), 355-366. doi: 10.1137/S0040585X97979019. Google Scholar [12] R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk models, Applied Stochastic Models in Bussines and Industry, 25 (2009), 309-321. doi: 10.1002/asmb.747. Google Scholar [13] V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995. Google Scholar [14] E. J. G. Pitman, Subexponential distribution functions, Journal of Australian Mathematical Society (Series A), 29 (1980), 337-347. doi: 10.1017/S1446788700021340. Google Scholar [15] A. N. Shiryaev, Probability, Springer, 1996. doi: 10.1007/978-1-4757-2539-1. Google Scholar [16] W. L. Smith, On the elementary renewal theorem for non -identicaly distributed variables, Pacific Journal of Mathematics, 14 (1964), 673-699. doi: 10.2140/pjm.1964.14.673. Google Scholar [17] Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stochastic Models, 20 (2004), 281-297. doi: 10.1081/STM-200025739. Google Scholar [18] N. Veraverbeke, Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Processes and their Applications, 5 (1977), 27-37. doi: 10.1016/0304-4149(77)90047-3. Google Scholar [19] Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223. doi: 10.1016/j.jmaa.2012.01.025. Google Scholar
 [1] Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31 [2] Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229 [3] Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719 [4] Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058 [5] Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial & Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849 [6] Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010 [7] Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 [8] Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463 [9] Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721 [10] Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017 [11] Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469 [12] Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275 [13] Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016 [14] Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115 [15] Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387 [16] Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023 [17] Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137 [18] Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050 [19] Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165 [20] Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks & Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185

2018 Impact Factor: 1.025