# American Institute of Mathematical Sciences

January  2017, 13(1): 47-62. doi: 10.3934/jimo.2016003

## Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control

 Institut für Mathematik und Rechneranwendung (LRT-1), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany

* Corresponding author

Received  May 2014 Published  March 2016

We consider the numerical solution of nonlinear and nonsmooth operator equations in Hilbert spaces. A semismooth Newton method is used for search direction generation. The operator equation is solved by a globalized semismooth Newton method that is equipped with an Armijo linesearch using a semismooth merit function. We prove that an accumulation point of the globalized algorithm is a solution and transition to fast local convergence under a directional Hadamard-like continuity assumption on the Newton matrix. In particular, no auxiliary descent directions or smoothing steps are required. Finally, we apply this method to a control-constrained and also to a regularized state-constrained optimal control problem subject to partial differential equations.

Citation: Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial & Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003
##### References:

show all references

##### References:
Discrete solution of (P2) for $h=1/64$. Left-hand side: Optimal state $y^h(x_1, x_2)$ on $x_3$ axis vs. $x_1$ and $x_2$. Right-hand side: Optimal control $u^h(x_1, x_2)$ on $x_3$ axis vs. $x_1$ and $x_2$
Discrete solution of (P3) for $h=1/32$. Left-hand side: Optimal state $y^h(x_1, x_2)$ on $x_3$ axis vs. $x_1$ and $x_2$. Right-hand side: Optimal control $u^h(x_1, x_2)$ on $x_3$ axis vs. $x_1$ and $x_2$
Iteration history for the solution of problem (P2) for $h=1/256$. Step size $\alpha_k$, norm $\Vert f(z_k)\Vert_{Z^*}$ and norm of the search direction $\Vert s_k\Vert_Z$ for the $k$-th iterate. These numerical results exhibit the superlinear convergence
 $k$ $\alpha_k$ $\left\Vert f(z_k)\right\Vert_{Z^*}$ $\left\Vert s_k\right\Vert_Z$ 0 - 5.43111E-02 - 1 9.76563E-04 5.43015E-02 5.00085E+00 2 3.12500E-02 5.36304E-02 1.82556E+00 3 5.00000E-01 2.91839E-02 1.55585E+00 4 6.25000E-02 2.75202E-02 3.87423E-01 ┆ 16 0.25000E+00 1.65715E-02 2.48095E-02 17 0.50000E+00 1.38976E-02 1.28644E-02 18 1.00000E+00 1.24060E-02 6.81858E-03 19 1.00000E+00 9.44693E-03 1.63072E-03 20 1.00000E+00 5.60965E-06 4.47294E-05 21 1.00000E+00 2.27743E-15 1.57318E-11
 $k$ $\alpha_k$ $\left\Vert f(z_k)\right\Vert_{Z^*}$ $\left\Vert s_k\right\Vert_Z$ 0 - 5.43111E-02 - 1 9.76563E-04 5.43015E-02 5.00085E+00 2 3.12500E-02 5.36304E-02 1.82556E+00 3 5.00000E-01 2.91839E-02 1.55585E+00 4 6.25000E-02 2.75202E-02 3.87423E-01 ┆ 16 0.25000E+00 1.65715E-02 2.48095E-02 17 0.50000E+00 1.38976E-02 1.28644E-02 18 1.00000E+00 1.24060E-02 6.81858E-03 19 1.00000E+00 9.44693E-03 1.63072E-03 20 1.00000E+00 5.60965E-06 4.47294E-05 21 1.00000E+00 2.27743E-15 1.57318E-11
Iteration history for the solution of problem (P3) for $h=1/128$. Step size $\alpha_k$, norm $\Vert f(z_k)\Vert_{Z^*}$ and norm of the search direction $\Vert s_k\Vert_Z$ for the $k$-th iterate. We observe transition to local superlinear convergence
 $k$ $\alpha$ $\left\Vert f(z_k)\right\Vert_{Z^*}$ $\left\Vert s_k\right\Vert_{Z^*}$ 0 - 7.59736E+05 - 1 1.00000E+00 1.14024E+05 1.93458E+03 2 1.00000E+00 3.61620E+04 7.83427E+02 3 1.00000E+00 1.59280E+04 1.62132E+03 ┆ 9 2.50000E-01 3.03640E-02 1.48894E-01 10 1.00000E+00 9.69843E-03 3.23249E-02 11 1.00000E+00 2.42234E-05 9.90030E-06 12 1.00000E+00 3.15754E-06 2.56947E-07 13 1.00000E+00 1.14583E-07 1.59876E-09 14 1.00000E+00 1.70426E-13 5.17916e-13
 $k$ $\alpha$ $\left\Vert f(z_k)\right\Vert_{Z^*}$ $\left\Vert s_k\right\Vert_{Z^*}$ 0 - 7.59736E+05 - 1 1.00000E+00 1.14024E+05 1.93458E+03 2 1.00000E+00 3.61620E+04 7.83427E+02 3 1.00000E+00 1.59280E+04 1.62132E+03 ┆ 9 2.50000E-01 3.03640E-02 1.48894E-01 10 1.00000E+00 9.69843E-03 3.23249E-02 11 1.00000E+00 2.42234E-05 9.90030E-06 12 1.00000E+00 3.15754E-06 2.56947E-07 13 1.00000E+00 1.14583E-07 1.59876E-09 14 1.00000E+00 1.70426E-13 5.17916e-13
 [1] Matthias Gerdts, Martin Kunkel. A nonsmooth Newton's method for discretized optimal control problems with state and control constraints. Journal of Industrial & Management Optimization, 2008, 4 (2) : 247-270. doi: 10.3934/jimo.2008.4.247 [2] Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial & Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235 [3] Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733 [4] Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024 [5] Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 [6] Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 [7] Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 [8] Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018 [9] Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629 [10] Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 [11] Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030 [12] Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571 [13] M. Arisawa, P.-L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 297-305. doi: 10.3934/dcds.1996.2.297 [14] Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579 [15] Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial & Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553 [16] IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054 [17] Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 [18] Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 [19] Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082 [20] Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

2018 Impact Factor: 1.025

## Tools

Article outline

Figures and Tables