# American Institute of Mathematical Sciences

• Previous Article
A full-modified-Newton step infeasible interior-point algorithm for linear optimization
• JIMO Home
• This Issue
• Next Article
Component allocation cost minimization for a multistate computer network subject to a reliability threshold using tabu search
January  2016, 12(1): 117-140. doi: 10.3934/jimo.2016.12.117

## A compaction scheme and generator for distribution networks

 1 Department of Industrial and Information Management, National Cheng Kung University, Tainan, 701, Taiwan

Received  March 2014 Revised  November 2014 Published  April 2015

In a distribution network, materials or products that go through a decomposition process can be considered as flows entering a specialized node, called D-node, which distributes each decomposed flow along an outgoing arc. Flows on each arc emanating from a D-node have to obey a pre-specified proportional relationship, in addition to the capacity constraints. The solution procedures for calculating optimal flows over distribution networks in literature often assumes D-nodes to be disjoint, whereas in reality D-nodes may often connect to each other and complicate the problem. In this paper, we propose a polynomial-time network compaction scheme that compresses a distribution network into an equivalent one of smaller size, which can then be directly solved by conventional solution methods in related literature. In order to provide test cases of distribution networks containing D-nodes for computational tests in related research, we implement a random network generator that produces a connected and acyclic distribution network in a compact form. Mathematical properties together with their proofs are also discussed to provide more insights in the design of our generator.
Citation: I-Lin Wang, Ju-Chun Lin. A compaction scheme and generator for distribution networks. Journal of Industrial & Management Optimization, 2016, 12 (1) : 117-140. doi: 10.3934/jimo.2016.12.117
##### References:
 [1] R. K. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and Applications,, Prentice Hall, (1993). Google Scholar [2] R. J. Anderson and J. C. Setubal, Goldberg's algorithm for maximum flow in perspective: A computatioinal study,, in Network flows and matching: First DIMACS implementation challenge (eds. D. S. Johnson and C. McGeoch), (1993), 1. Google Scholar [3] U. Bahceci and O. Feyzioglu, A network simplex based algorithm for the minimum cost proportional flow problem with disconnected subnetworks,, Optimization Letters, 6 (2012), 1173. doi: 10.1007/s11590-011-0356-5. Google Scholar [4] M. D. Chang, C. H. J. Chen and M. Engquist, An improved primal simplex variant for pure processing networks,, ACM Transactions on Mathematical Software, 15 (1989), 64. doi: 10.1145/62038.62041. Google Scholar [5] C. H. J. Chen and M. Engquist, A primal simplex approach to pure processing networks,, Management Science, 32 (1986), 1582. doi: 10.1287/mnsc.32.12.1582. Google Scholar [6] B. V. Cherkassky and A. V. Goldberg, On implementing push-relabel method for the maximum flow problem,, Algorithmica, 19 (1997), 390. doi: 10.1007/PL00009180. Google Scholar [7] B. T. Denton, J. Forrest and R. J. Milne, Ibm solves a mixed-integer program to optimize its semiconductor supplychain,, Interfaces, 36 (2006), 386. Google Scholar [8] S. C. Fang and L. Qi, Manufacturing network flows: A generalized network flow model for manufacturingprocess modeling,, Optimization Methods and Software, 18 (2003), 143. doi: 10.1080/1055678031000152079. Google Scholar [9] D. Goldfarb and M. D. Grigoriadis, A computational comparison of the dinic and network simplex methods formaximum flow,, Annals of Operations Research, 13 (1988), 83. doi: 10.1007/BF02288321. Google Scholar [10] D. Klingman, A. Napier and J. Stutz, Netgen: A program for generating large scale capacitated assignment, transportation and minimum cost flow networks,, Management Science, 20 (1974), 814. Google Scholar [11] J. Koene, Minimal Cost Flow in Processing Networks, a Primal Approach,, PhD thesis, (1983). Google Scholar [12] L.-C. Kung and C.-C. Chern, Heuristic factory planning algorithm for advanced planning and scheduling,, Computers and Operations Research, 36 (2009), 2513. doi: 10.1016/j.cor.2008.09.013. Google Scholar [13] Y.-K. Lin, C.-T. Yeh and C.-F. Huang, Reliability evaluation of a stochastic-flow distribution network with delivery spoilage,, Computers and Industrial Engineering, 66 (2013), 352. doi: 10.1016/j.cie.2013.06.019. Google Scholar [14] H. Lu, E. Yao and L. Qi, Some further results on minimum distribution cost flow problems,, Journal of Combinatorial Optimization, 11 (2006), 351. Google Scholar [15] P. Lyon, R. J. Milne, R. Orzell and R. Rice, Matching assets with demand in supply-chain management at ibm microelectronics,, Interfaces, 31 (2001), 108. doi: 10.1287/inte.31.1.108.9693. Google Scholar [16] R. L. Sheu, M. J. Ting and I. L. Wang, Maximum flow problem in the distribution network,, Journal of Industrial and Management Optimization, 2 (2006), 237. doi: 10.3934/jimo.2006.2.237. Google Scholar [17] J. Shu, M. Chou, Q. Liu, C.-P. Teo and I.-L. Wang, Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems,, Operations, 61 (2013), 1346. doi: 10.1287/opre.2013.1215. Google Scholar [18] I. L. Wang and S. J. Lin, A network simplex algorithm for solving the minimum distribution cost problem,, Journal of Industrial and Management Optimization, 5 (2009), 929. doi: 10.3934/jimo.2009.5.929. Google Scholar [19] I. L. Wang and Y. H. Yang, On solving the uncapacitated minimum cost flow problems in a distribution network,, International Journal of Reliability and Quality Performance, 1 (2009), 53. Google Scholar

show all references

##### References:
 [1] R. K. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and Applications,, Prentice Hall, (1993). Google Scholar [2] R. J. Anderson and J. C. Setubal, Goldberg's algorithm for maximum flow in perspective: A computatioinal study,, in Network flows and matching: First DIMACS implementation challenge (eds. D. S. Johnson and C. McGeoch), (1993), 1. Google Scholar [3] U. Bahceci and O. Feyzioglu, A network simplex based algorithm for the minimum cost proportional flow problem with disconnected subnetworks,, Optimization Letters, 6 (2012), 1173. doi: 10.1007/s11590-011-0356-5. Google Scholar [4] M. D. Chang, C. H. J. Chen and M. Engquist, An improved primal simplex variant for pure processing networks,, ACM Transactions on Mathematical Software, 15 (1989), 64. doi: 10.1145/62038.62041. Google Scholar [5] C. H. J. Chen and M. Engquist, A primal simplex approach to pure processing networks,, Management Science, 32 (1986), 1582. doi: 10.1287/mnsc.32.12.1582. Google Scholar [6] B. V. Cherkassky and A. V. Goldberg, On implementing push-relabel method for the maximum flow problem,, Algorithmica, 19 (1997), 390. doi: 10.1007/PL00009180. Google Scholar [7] B. T. Denton, J. Forrest and R. J. Milne, Ibm solves a mixed-integer program to optimize its semiconductor supplychain,, Interfaces, 36 (2006), 386. Google Scholar [8] S. C. Fang and L. Qi, Manufacturing network flows: A generalized network flow model for manufacturingprocess modeling,, Optimization Methods and Software, 18 (2003), 143. doi: 10.1080/1055678031000152079. Google Scholar [9] D. Goldfarb and M. D. Grigoriadis, A computational comparison of the dinic and network simplex methods formaximum flow,, Annals of Operations Research, 13 (1988), 83. doi: 10.1007/BF02288321. Google Scholar [10] D. Klingman, A. Napier and J. Stutz, Netgen: A program for generating large scale capacitated assignment, transportation and minimum cost flow networks,, Management Science, 20 (1974), 814. Google Scholar [11] J. Koene, Minimal Cost Flow in Processing Networks, a Primal Approach,, PhD thesis, (1983). Google Scholar [12] L.-C. Kung and C.-C. Chern, Heuristic factory planning algorithm for advanced planning and scheduling,, Computers and Operations Research, 36 (2009), 2513. doi: 10.1016/j.cor.2008.09.013. Google Scholar [13] Y.-K. Lin, C.-T. Yeh and C.-F. Huang, Reliability evaluation of a stochastic-flow distribution network with delivery spoilage,, Computers and Industrial Engineering, 66 (2013), 352. doi: 10.1016/j.cie.2013.06.019. Google Scholar [14] H. Lu, E. Yao and L. Qi, Some further results on minimum distribution cost flow problems,, Journal of Combinatorial Optimization, 11 (2006), 351. Google Scholar [15] P. Lyon, R. J. Milne, R. Orzell and R. Rice, Matching assets with demand in supply-chain management at ibm microelectronics,, Interfaces, 31 (2001), 108. doi: 10.1287/inte.31.1.108.9693. Google Scholar [16] R. L. Sheu, M. J. Ting and I. L. Wang, Maximum flow problem in the distribution network,, Journal of Industrial and Management Optimization, 2 (2006), 237. doi: 10.3934/jimo.2006.2.237. Google Scholar [17] J. Shu, M. Chou, Q. Liu, C.-P. Teo and I.-L. Wang, Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems,, Operations, 61 (2013), 1346. doi: 10.1287/opre.2013.1215. Google Scholar [18] I. L. Wang and S. J. Lin, A network simplex algorithm for solving the minimum distribution cost problem,, Journal of Industrial and Management Optimization, 5 (2009), 929. doi: 10.3934/jimo.2009.5.929. Google Scholar [19] I. L. Wang and Y. H. Yang, On solving the uncapacitated minimum cost flow problems in a distribution network,, International Journal of Reliability and Quality Performance, 1 (2009), 53. Google Scholar
 [1] R.L. Sheu, M.J. Ting, I.L. Wang. Maximum flow problem in the distribution network. Journal of Industrial & Management Optimization, 2006, 2 (3) : 237-254. doi: 10.3934/jimo.2006.2.237 [2] Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453 [3] Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339 [4] Qiong Liu, Ahmad Reza Rezaei, Kuan Yew Wong, Mohammad Mahdi Azami. Integrated modeling and optimization of material flow and financial flow of supply chain network considering financial ratios. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 113-132. doi: 10.3934/naco.2019009 [5] King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021 [6] Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 [7] Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521 [8] Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670 [9] I-Lin Wang, Shiou-Jie Lin. A network simplex algorithm for solving the minimum distribution cost problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 929-950. doi: 10.3934/jimo.2009.5.929 [10] Huai-Che Hong, Bertrand M. T. Lin. A note on network repair crew scheduling and routing for emergency relief distribution problem. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1729-1731. doi: 10.3934/jimo.2018119 [11] Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251 [12] Yi-Kuei Lin, Cheng-Ta Yeh. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. Journal of Industrial & Management Optimization, 2011, 7 (1) : 211-227. doi: 10.3934/jimo.2011.7.211 [13] Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094 [14] Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71 [15] Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow. Networks & Heterogeneous Media, 2014, 9 (1) : 65-95. doi: 10.3934/nhm.2014.9.65 [16] Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics & Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016 [17] Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149 [18] T. S. Evans, A. D. K. Plato. Network rewiring models. Networks & Heterogeneous Media, 2008, 3 (2) : 221-238. doi: 10.3934/nhm.2008.3.221 [19] David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161. [20] Pradeep Dubey, Rahul Garg, Bernard De Meyer. Competing for customers in a social network. Journal of Dynamics & Games, 2014, 1 (3) : 377-409. doi: 10.3934/jdg.2014.1.377

2018 Impact Factor: 1.025

## Metrics

• PDF downloads (8)
• HTML views (0)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]