• Previous Article
    Explicit solution for the stationary distribution of a discrete-time finite buffer queue
  • JIMO Home
  • This Issue
  • Next Article
    Production planning in a three-stock reverse-logistics system with deteriorating items under a periodic review policy
July  2016, 12(3): 1091-1119. doi: 10.3934/jimo.2016.12.1091

An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity

1. 

School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

2. 

Department of Mathematics, Bhangar Mahavidyalaya, Bhangar-743502, South 24 Parganas, India

Received  November 2014 Revised  May 2015 Published  September 2015

The paper deals with an inventory control problem for perishable items where two level credit periods depend on the order quantity over the finite time horizon. We assume that the supplier offers delay in payment on outstanding cost of purchasing goods to the retailer when purchasing amount is more than a fixed large amount. Moreover, the retailer offers a delay period to the customers for payment of their purchasing goods. In the inventory system, shortage is permitted and it is completely backordered.The net present value of the retailer's cost function, including costs of ordering, inventory holding, shortage, purchasing and other opportunities, is optimized. Then, an algorithm is proposed to determine the optimal values of order quantity, shortage quantity, number of cycles and the total cost of the system. Finally, a numerical example with sensitivity analysis of the key parameters is illustrated to show the applicability of the proposed model.
Citation: Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091
References:
[1]

S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments,, Journal of the Operational Research Society, 46 (1995), 658. Google Scholar

[2]

M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001,, European journal of Operational Research, 221 (2012), 275. doi: 10.1016/j.ejor.2012.03.004. Google Scholar

[3]

C. T. Chang, L. Y. Ouyang and Y. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity,, Applied Mathematical Modelling, 27 (2003), 983. doi: 10.1016/S0307-904X(03)00131-8. Google Scholar

[4]

C. T. Chang, An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity,, Int. J. Prod.Econ., 88 (2004), 307. doi: 10.1016/S0925-5273(03)00192-0. Google Scholar

[5]

C. T. Chang, S. J. Wu and L. C. Chen, Optimal payment time with deteriorating items under inflation and permissible delay in payment,, International Journal of system Science, 40 (2009), 985. doi: 10.1080/00207720902974561. Google Scholar

[6]

J. M. Chen, An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting,, Int. J. Prod.Econ., 55 (1998), 21. doi: 10.1016/S0925-5273(98)00011-5. Google Scholar

[7]

C. Y. Chiu, M. F. Yang, C. Jung and Y. Lin, Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity,, Journal of Industrial and Management Optimization, 9 (2013), 945. doi: 10.3934/jimo.2013.9.945. Google Scholar

[8]

K. J. Chung, An EOQ model with defective items and partially permissible delay in payments linked to order quantity derived analytically in the supply chain management,, Appl. Math. Model., 37 (2013), 2317. doi: 10.1016/j.apm.2012.05.014. Google Scholar

[9]

K. J. Chung and P. S. Ting, The inventory model under supplier's partial trade credit policy in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 1175. doi: 10.3934/jimo.2015.11.1175. Google Scholar

[10]

M. Ghoreishi, A. Mirzazadeh, G. W. Weber, A. Turkey and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns,, Journal of Industrial and Management Optimization, 11 (2015), 933. doi: 10.3934/jimo.2015.11.933. Google Scholar

[11]

S. K. Goyal, EOQ under conditions of permissible delay in payments,, Journal of the Operational Research Society, 36 (1985), 335. Google Scholar

[12]

Y. F. Huang, Optimal retailer's ordering polices in the EOQ model under trade credit financing,, Journal of Operational Research, 176 (2003), 911. Google Scholar

[13]

A. Jamal, B. Sarker and S. Wang, Optimal payment time for a retailer under permitted delay of payment by the wholesaler,, Int. J. Prod.Econ., 66 (2000), 59. doi: 10.1016/S0925-5273(99)00108-5. Google Scholar

[14]

N. Khanlarzade, B. YousefiYegane, I. NakhaiKamalabadi and H. Farughid, Inventory control with deteriorating items: A state-of-the-art literature review,, International Journal of Industrial Engineering Computations, 5 (2014), 179. doi: 10.5267/j.ijiec.2013.11.003. Google Scholar

[15]

R. Li, H. Lan and J. R. Mawhinney, A review on deteriorating inventory study,, Journal of Service Science and Management, 3 (2010), 117. doi: 10.4236/jssm.2010.31015. Google Scholar

[16]

H. Liao and Y. Chen, Optimal payment time for retailers' inventory system,, International Journal of System Science, 34 (2003), 245. doi: 10.1080/0020772031000158546. Google Scholar

[17]

L. Y. Ouyang, C. T. Yang, Y. T. Chan and L. E. Cárdenas-Barrón, A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity,, Applied Mathematics and Computation, 224 (2013), 268. doi: 10.1016/j.amc.2013.08.062. Google Scholar

[18]

B. Pal, S. S. Sana and K. S. Chaudhuri, Three stage trade credit policy in a three-layer supply chain: A production inventory model,, International Journal of Systems Science, 45 (2014), 1844. doi: 10.1080/00207721.2012.757383. Google Scholar

[19]

J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting,, Int. J. Prod. Econ., 53 (1997), 171. doi: 10.1016/S0925-5273(97)00112-6. Google Scholar

[20]

S. Sana, An economic order quantity model for nonconforming quality products,, Service Science, 4 (2012), 331. doi: 10.1287/serv.1120.0027. Google Scholar

[21]

B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate,, Mathematical and Computer Modelling, 55 (2012), 367. doi: 10.1016/j.mcm.2011.08.009. Google Scholar

[22]

T. Sarkar, S. K. Ghosh and K. S. Chaudhuri, An optimal inventory replenishment policy for a deteriorating item with time quadratic demand and time dependent partial backlogging with shortages in all cycles,, Applied Mathematics and Computation, 218 (2012), 9147. doi: 10.1016/j.amc.2012.02.072. Google Scholar

[23]

H. Soni, N. H. Shah and C. K. Jaggi, Inventory models and trade credit,, J. Con. Cyb., 39 (2010), 867. Google Scholar

[24]

A. A. Taleizadeh and M. Nematollahi, An inventory control problem for deteriorating items with back-ordering and financial considerations,, Appl. Math.Model., 38 (2014), 93. doi: 10.1016/j.apm.2013.05.065. Google Scholar

[25]

A. A. Taleizadeh, D. W. Pentico, M. S. Jabal-ameli and M. Aryanezhad, An EOQ model with partial delayed payment and partial backordering,, Omega, 41 (2013), 354. doi: 10.1016/j.omega.2012.03.008. Google Scholar

[26]

P. S. Ting, The EPQ model with deteriorating items under two levels of trade credit in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 479. doi: 10.3934/jimo.2015.11.479. Google Scholar

[27]

M. Valliathal and R. Uthayakumar, An EOQ model for perishable items under stock and time dependent selling rate with shortages,, ARPN Journal of Engineering and Applied Sciences, 4 (2009), 8. Google Scholar

[28]

G. A. Widyadana, L. E. Cárdenas-Barrón and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level,, Mathematical and Computer Modelling, 54 (2011), 1569. doi: 10.1016/j.mcm.2011.04.028. Google Scholar

show all references

References:
[1]

S. P. Aggarwal and C. K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments,, Journal of the Operational Research Society, 46 (1995), 658. Google Scholar

[2]

M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001,, European journal of Operational Research, 221 (2012), 275. doi: 10.1016/j.ejor.2012.03.004. Google Scholar

[3]

C. T. Chang, L. Y. Ouyang and Y. T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering quantity,, Applied Mathematical Modelling, 27 (2003), 983. doi: 10.1016/S0307-904X(03)00131-8. Google Scholar

[4]

C. T. Chang, An EOQ model with deteriorating items under inflation when supplier credits linked to order quantity,, Int. J. Prod.Econ., 88 (2004), 307. doi: 10.1016/S0925-5273(03)00192-0. Google Scholar

[5]

C. T. Chang, S. J. Wu and L. C. Chen, Optimal payment time with deteriorating items under inflation and permissible delay in payment,, International Journal of system Science, 40 (2009), 985. doi: 10.1080/00207720902974561. Google Scholar

[6]

J. M. Chen, An inventory model for deteriorating items with time-proportional demand and shortages under inflation and time discounting,, Int. J. Prod.Econ., 55 (1998), 21. doi: 10.1016/S0925-5273(98)00011-5. Google Scholar

[7]

C. Y. Chiu, M. F. Yang, C. Jung and Y. Lin, Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity,, Journal of Industrial and Management Optimization, 9 (2013), 945. doi: 10.3934/jimo.2013.9.945. Google Scholar

[8]

K. J. Chung, An EOQ model with defective items and partially permissible delay in payments linked to order quantity derived analytically in the supply chain management,, Appl. Math. Model., 37 (2013), 2317. doi: 10.1016/j.apm.2012.05.014. Google Scholar

[9]

K. J. Chung and P. S. Ting, The inventory model under supplier's partial trade credit policy in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 1175. doi: 10.3934/jimo.2015.11.1175. Google Scholar

[10]

M. Ghoreishi, A. Mirzazadeh, G. W. Weber, A. Turkey and I. Nakhai-Kamalabadi, Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns,, Journal of Industrial and Management Optimization, 11 (2015), 933. doi: 10.3934/jimo.2015.11.933. Google Scholar

[11]

S. K. Goyal, EOQ under conditions of permissible delay in payments,, Journal of the Operational Research Society, 36 (1985), 335. Google Scholar

[12]

Y. F. Huang, Optimal retailer's ordering polices in the EOQ model under trade credit financing,, Journal of Operational Research, 176 (2003), 911. Google Scholar

[13]

A. Jamal, B. Sarker and S. Wang, Optimal payment time for a retailer under permitted delay of payment by the wholesaler,, Int. J. Prod.Econ., 66 (2000), 59. doi: 10.1016/S0925-5273(99)00108-5. Google Scholar

[14]

N. Khanlarzade, B. YousefiYegane, I. NakhaiKamalabadi and H. Farughid, Inventory control with deteriorating items: A state-of-the-art literature review,, International Journal of Industrial Engineering Computations, 5 (2014), 179. doi: 10.5267/j.ijiec.2013.11.003. Google Scholar

[15]

R. Li, H. Lan and J. R. Mawhinney, A review on deteriorating inventory study,, Journal of Service Science and Management, 3 (2010), 117. doi: 10.4236/jssm.2010.31015. Google Scholar

[16]

H. Liao and Y. Chen, Optimal payment time for retailers' inventory system,, International Journal of System Science, 34 (2003), 245. doi: 10.1080/0020772031000158546. Google Scholar

[17]

L. Y. Ouyang, C. T. Yang, Y. T. Chan and L. E. Cárdenas-Barrón, A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity,, Applied Mathematics and Computation, 224 (2013), 268. doi: 10.1016/j.amc.2013.08.062. Google Scholar

[18]

B. Pal, S. S. Sana and K. S. Chaudhuri, Three stage trade credit policy in a three-layer supply chain: A production inventory model,, International Journal of Systems Science, 45 (2014), 1844. doi: 10.1080/00207721.2012.757383. Google Scholar

[19]

J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting,, Int. J. Prod. Econ., 53 (1997), 171. doi: 10.1016/S0925-5273(97)00112-6. Google Scholar

[20]

S. Sana, An economic order quantity model for nonconforming quality products,, Service Science, 4 (2012), 331. doi: 10.1287/serv.1120.0027. Google Scholar

[21]

B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate,, Mathematical and Computer Modelling, 55 (2012), 367. doi: 10.1016/j.mcm.2011.08.009. Google Scholar

[22]

T. Sarkar, S. K. Ghosh and K. S. Chaudhuri, An optimal inventory replenishment policy for a deteriorating item with time quadratic demand and time dependent partial backlogging with shortages in all cycles,, Applied Mathematics and Computation, 218 (2012), 9147. doi: 10.1016/j.amc.2012.02.072. Google Scholar

[23]

H. Soni, N. H. Shah and C. K. Jaggi, Inventory models and trade credit,, J. Con. Cyb., 39 (2010), 867. Google Scholar

[24]

A. A. Taleizadeh and M. Nematollahi, An inventory control problem for deteriorating items with back-ordering and financial considerations,, Appl. Math.Model., 38 (2014), 93. doi: 10.1016/j.apm.2013.05.065. Google Scholar

[25]

A. A. Taleizadeh, D. W. Pentico, M. S. Jabal-ameli and M. Aryanezhad, An EOQ model with partial delayed payment and partial backordering,, Omega, 41 (2013), 354. doi: 10.1016/j.omega.2012.03.008. Google Scholar

[26]

P. S. Ting, The EPQ model with deteriorating items under two levels of trade credit in a supply chain system,, Journal of Industrial and Management Optimization, 11 (2015), 479. doi: 10.3934/jimo.2015.11.479. Google Scholar

[27]

M. Valliathal and R. Uthayakumar, An EOQ model for perishable items under stock and time dependent selling rate with shortages,, ARPN Journal of Engineering and Applied Sciences, 4 (2009), 8. Google Scholar

[28]

G. A. Widyadana, L. E. Cárdenas-Barrón and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level,, Mathematical and Computer Modelling, 54 (2011), 1569. doi: 10.1016/j.mcm.2011.04.028. Google Scholar

[1]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[2]

Chui-Yu Chiu, Ming-Feng Yang, Chung-Jung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial & Management Optimization, 2013, 9 (4) : 945-965. doi: 10.3934/jimo.2013.9.945

[3]

Yu-Chung Tsao. Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits. Journal of Industrial & Management Optimization, 2017, 13 (1) : 329-347. doi: 10.3934/jimo.2016020

[4]

Luis C. Corchón. Imperfectly competitive markets, trade unions and inflation: Do imperfectly competitive markets transmit more inflation than perfectly competitive ones? A theoretical appraisal. Journal of Dynamics & Games, 2018, 5 (3) : 189-201. doi: 10.3934/jdg.2018012

[5]

Zhenwei Luo, Jinting Wang. The optimal price discount, order quantity and minimum quantity in newsvendor model with group purchase. Journal of Industrial & Management Optimization, 2015, 11 (1) : 1-11. doi: 10.3934/jimo.2015.11.1

[6]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[7]

Mahdi Karimi, Seyed Jafar Sadjadi, Alireza Ghasemi Bijaghini. An economic order quantity for deteriorating items with allowable rework of deteriorated products. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1857-1879. doi: 10.3934/jimo.2018126

[8]

Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012

[9]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010

[10]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[11]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[12]

Sankar Kumar Roy, Magfura Pervin, Gerhard Wilhelm Weber. Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019032

[13]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018180

[14]

Lihui Zhang, Xin Zou, Jianxun Qi. A trade-off between time and cost in scheduling repetitive construction projects. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1423-1434. doi: 10.3934/jimo.2015.11.1423

[15]

Nurhadi Siswanto, Stefanus Eko Wiratno, Ahmad Rusdiansyah, Ruhul Sarker. Maritime inventory routing problem with multiple time windows. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1185-1211. doi: 10.3934/jimo.2018091

[16]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098

[17]

Xin Zhou, Liangping Shi, Bingzhi Huang. Integrated inventory model with stochastic lead time and controllable variability for milk runs. Journal of Industrial & Management Optimization, 2012, 8 (3) : 657-672. doi: 10.3934/jimo.2012.8.657

[18]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[19]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

[20]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (25)

[Back to Top]