April  2015, 11(2): 645-660. doi: 10.3934/jimo.2015.11.645

Neural network smoothing approximation method for stochastic variational inequality problems

1. 

School of Economics, Southwest University for Nationalities, Chengdu, Sichuan 610041, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064

Received  June 2012 Revised  May 2014 Published  September 2014

This paper is concerned with solving a stochastic variational inequality problem (for short, SVIP) from a viewpoint of minimization of mixed conditional value-at-risk (CVaR). The regularized gap function for SVIP is used to define a loss function for the SVIP and mixed CVaR to measure the loss. In this setting, SVIP can be reformulated as a deterministic minimization problem. We show that the reformulation is a convex program for a huge class of SVIP under suitable conditions. Since mixed CVaR involves the plus function and mathematical expectation, the neural network smoothing function and Monte Carlo method are employed to get an approximation problem of the minimization reformulation. Finally, we consider the convergence of optimal solutions and stationary points of the approximation.
Citation: Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645
References:
[1]

R. P. Agdeppa, N. Yamashita and M. Fukushima, Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem,, Pacific Journal of Optimization, 6 (2010), 3. Google Scholar

[2]

R. J. Aumann, Integrals of set-value function,, Journal of Mathematical Analysis and Applications, 12 (1965), 1. doi: 10.1016/0022-247X(65)90049-1. Google Scholar

[3]

B. T. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems,, SIAM Journal on Optimization, 7 (1997), 403. doi: 10.1137/S1052623495280615. Google Scholar

[4]

X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems,, Mathematics of Operations Research, 30 (2005), 1022. doi: 10.1287/moor.1050.0160. Google Scholar

[5]

X. Chen and G. H. Lin, CVaR-based formulation and approximation method for Stochastic variational inequalities,, Numerical Algebra, 1 (2011), 35. doi: 10.3934/naco.2011.1.35. Google Scholar

[6]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems,, Mathematical Programming, 117 (2009), 51. doi: 10.1007/s10107-007-0163-z. Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983). Google Scholar

[8]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,, Mathematical Programming, 53 (1992), 99. doi: 10.1007/BF01585696. Google Scholar

[9]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems,, Springer, (2003). doi: 10.1007/b97544. Google Scholar

[10]

H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ matrix linear complementarity problems,, SIAM Journal on Optimization, 18 (2007), 482. doi: 10.1137/050630805. Google Scholar

[11]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,, Mathematical Programming, 48 (1990), 161. doi: 10.1007/BF01582255. Google Scholar

[12]

W. W. Hogan, Energy policy models for project independence,, Computers and Operations Research, 2 (1975), 251. doi: 10.1016/0305-0548(75)90008-8. Google Scholar

[13]

H. Jiang and H. F. Xu, Stochastic approximation approaches to the stochastic variational inequality problem,, IEEE Transactions on Automatic Control, 53 (2008), 1462. doi: 10.1109/TAC.2008.925853. Google Scholar

[14]

D. Kinderlehre and G. Stampacchia, An Intruduction to Variational Inequalities and Their Aplications,, Academic Press, (1980). Google Scholar

[15]

G. H. Lin, X. Chen and M. Fukushima, New restricted NCP function and their applications to stochastic NCP and stochastic MPEC,, Optimization, 56 (2007), 641. doi: 10.1080/02331930701617320. Google Scholar

[16]

G. H. Lin and M. Fukushima, Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A survey,, Pacific Journal of Optimization, 6 (2010), 455. Google Scholar

[17]

G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity peoblems,, Optimization Methods and Software, 21 (2006), 551. doi: 10.1080/10556780600627610. Google Scholar

[18]

C. Ling, L. Qi, G. Zhou and L. Caccetta, The SC' property of an expected residual function arising from stochastic complementarity problems,, Operations Research Letters, 36 (2008), 456. doi: 10.1016/j.orl.2008.01.010. Google Scholar

[19]

M. J. Luo and G. H. Lin, Expected residual minimization method for stochastic variational inequality problems,, Journal of Optimization Theory and Applications, 140 (2009), 103. doi: 10.1007/s10957-008-9439-6. Google Scholar

[20]

M. J. Luo and G. H. Lin, Convergence results of the ERM method for nonlinear stochastic variational inequality problems,, Journal of Optimization Theory and Applications, 142 (2009), 569. doi: 10.1007/s10957-009-9534-3. Google Scholar

[21]

F. W. Meng, J. Sun and M. Goh, Stochastic optimization problems with CVaR risk measure and their sample average approximation,, Journal of Optimization Theory and Applications, 146 (2010), 399. doi: 10.1007/s10957-010-9676-3. Google Scholar

[22]

L. Q. Qi, D. F. Sun and G. L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities,, Mathematical Programming, 87 (2000), 1. Google Scholar

[23]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 493. Google Scholar

[24]

A. Ruszczynski and A. Shapiro, Stochastic Programming,, Elsevier, (2003). Google Scholar

[25]

A. Shapiro, Stochastic Programming by Monte Carlo Simulation Methods,, Stochastic Programming E-Print Series, (2000). Google Scholar

[26]

M. Z. Wang, M. M. Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks,, Journal of Industrial and Management Optimization, 7 (2011), 317. doi: 10.3934/jimo.2011.7.317. Google Scholar

[27]

D. De Wolf and Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium model,, Management Science, 43 (1997), 190. Google Scholar

[28]

H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems,, Asia-Pacific Journal of Operational Research, 27 (2010), 103. doi: 10.1142/S0217595910002569. Google Scholar

[29]

H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications,, Mathematical Programming, 119 (2009), 371. doi: 10.1007/s10107-008-0214-0. Google Scholar

[30]

C. Zhang and X. Chen, Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty,, Journal of Optimization Theory and Applications, 137 (2008), 277. doi: 10.1007/s10957-008-9358-6. Google Scholar

show all references

References:
[1]

R. P. Agdeppa, N. Yamashita and M. Fukushima, Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem,, Pacific Journal of Optimization, 6 (2010), 3. Google Scholar

[2]

R. J. Aumann, Integrals of set-value function,, Journal of Mathematical Analysis and Applications, 12 (1965), 1. doi: 10.1016/0022-247X(65)90049-1. Google Scholar

[3]

B. T. Chen and P. T. Harker, Smooth approximations to nonlinear complementarity problems,, SIAM Journal on Optimization, 7 (1997), 403. doi: 10.1137/S1052623495280615. Google Scholar

[4]

X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems,, Mathematics of Operations Research, 30 (2005), 1022. doi: 10.1287/moor.1050.0160. Google Scholar

[5]

X. Chen and G. H. Lin, CVaR-based formulation and approximation method for Stochastic variational inequalities,, Numerical Algebra, 1 (2011), 35. doi: 10.3934/naco.2011.1.35. Google Scholar

[6]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems,, Mathematical Programming, 117 (2009), 51. doi: 10.1007/s10107-007-0163-z. Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983). Google Scholar

[8]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,, Mathematical Programming, 53 (1992), 99. doi: 10.1007/BF01585696. Google Scholar

[9]

F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems,, Springer, (2003). doi: 10.1007/b97544. Google Scholar

[10]

H. Fang, X. Chen and M. Fukushima, Stochastic $R_0$ matrix linear complementarity problems,, SIAM Journal on Optimization, 18 (2007), 482. doi: 10.1137/050630805. Google Scholar

[11]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,, Mathematical Programming, 48 (1990), 161. doi: 10.1007/BF01582255. Google Scholar

[12]

W. W. Hogan, Energy policy models for project independence,, Computers and Operations Research, 2 (1975), 251. doi: 10.1016/0305-0548(75)90008-8. Google Scholar

[13]

H. Jiang and H. F. Xu, Stochastic approximation approaches to the stochastic variational inequality problem,, IEEE Transactions on Automatic Control, 53 (2008), 1462. doi: 10.1109/TAC.2008.925853. Google Scholar

[14]

D. Kinderlehre and G. Stampacchia, An Intruduction to Variational Inequalities and Their Aplications,, Academic Press, (1980). Google Scholar

[15]

G. H. Lin, X. Chen and M. Fukushima, New restricted NCP function and their applications to stochastic NCP and stochastic MPEC,, Optimization, 56 (2007), 641. doi: 10.1080/02331930701617320. Google Scholar

[16]

G. H. Lin and M. Fukushima, Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: A survey,, Pacific Journal of Optimization, 6 (2010), 455. Google Scholar

[17]

G. H. Lin and M. Fukushima, New reformulations for stochastic nonlinear complementarity peoblems,, Optimization Methods and Software, 21 (2006), 551. doi: 10.1080/10556780600627610. Google Scholar

[18]

C. Ling, L. Qi, G. Zhou and L. Caccetta, The SC' property of an expected residual function arising from stochastic complementarity problems,, Operations Research Letters, 36 (2008), 456. doi: 10.1016/j.orl.2008.01.010. Google Scholar

[19]

M. J. Luo and G. H. Lin, Expected residual minimization method for stochastic variational inequality problems,, Journal of Optimization Theory and Applications, 140 (2009), 103. doi: 10.1007/s10957-008-9439-6. Google Scholar

[20]

M. J. Luo and G. H. Lin, Convergence results of the ERM method for nonlinear stochastic variational inequality problems,, Journal of Optimization Theory and Applications, 142 (2009), 569. doi: 10.1007/s10957-009-9534-3. Google Scholar

[21]

F. W. Meng, J. Sun and M. Goh, Stochastic optimization problems with CVaR risk measure and their sample average approximation,, Journal of Optimization Theory and Applications, 146 (2010), 399. doi: 10.1007/s10957-010-9676-3. Google Scholar

[22]

L. Q. Qi, D. F. Sun and G. L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities,, Mathematical Programming, 87 (2000), 1. Google Scholar

[23]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 493. Google Scholar

[24]

A. Ruszczynski and A. Shapiro, Stochastic Programming,, Elsevier, (2003). Google Scholar

[25]

A. Shapiro, Stochastic Programming by Monte Carlo Simulation Methods,, Stochastic Programming E-Print Series, (2000). Google Scholar

[26]

M. Z. Wang, M. M. Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks,, Journal of Industrial and Management Optimization, 7 (2011), 317. doi: 10.3934/jimo.2011.7.317. Google Scholar

[27]

D. De Wolf and Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium model,, Management Science, 43 (1997), 190. Google Scholar

[28]

H. Xu, Sample average approximation methods for a class of stochastic variational inequality problems,, Asia-Pacific Journal of Operational Research, 27 (2010), 103. doi: 10.1142/S0217595910002569. Google Scholar

[29]

H. Xu and D. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications,, Mathematical Programming, 119 (2009), 371. doi: 10.1007/s10107-008-0214-0. Google Scholar

[30]

C. Zhang and X. Chen, Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty,, Journal of Optimization Theory and Applications, 137 (2008), 277. doi: 10.1007/s10957-008-9358-6. Google Scholar

[1]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[2]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[3]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[4]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019071

[5]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[6]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[7]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[8]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[9]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[10]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[11]

Lidong Liu, Fajie Wei, Shenghan Zhou. Major project risk assessment method based on BP neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1053-1064. doi: 10.3934/dcdss.2019072

[12]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[13]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[14]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[15]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019021

[16]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019050

[17]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[18]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[19]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[20]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]