January  2015, 11(1): 199-216. doi: 10.3934/jimo.2015.11.199

Sensor deployment for pipeline leakage detection via optimal boundary control strategies

1. 

State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems & Control, Zhejiang University, Hangzhou, Zhejiang 310027, China, China, China

2. 

Institute of Operations Research & Cybernetics, Zhejiang University, Hangzhou, Zhejiang 310027, China

3. 

Ningbo Institute of Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China

Received  December 2012 Revised  January 2014 Published  May 2014

We consider a multi-agent control problem using PDE techniques for a novel sensing problem arising in the leakage detection and localization of offshore pipelines. A continuous protocol is proposed using parabolic PDEs and then a boundary control law is designed using the maximum principle. Both analytical and numerical solutions of the optimality conditions are studied.
Citation: Chao Xu, Yimeng Dong, Zhigang Ren, Huachen Jiang, Xin Yu. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial & Management Optimization, 2015, 11 (1) : 199-216. doi: 10.3934/jimo.2015.11.199
References:
[1]

N. Ahmed and K. Teo, Optimal Control of Distributed Parameter Systems,, North Holland, (1981).

[2]

S. Anita, V. Arnautu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics,, Modeling and Simulation in Science, (2011). doi: 10.1007/978-0-8176-8098-5.

[3]

V. Arnautu and P. Neittaanmaki, Optimal Control from Theory to Computer Programs,, Kluwer Academic, (2003). doi: 10.1007/978-94-017-2488-3.

[4]

P. Barooah, P. Mehta and J. Hespanha, Mistuning-based control design to improve closed-loop stability margin of vehicular platoons,, IEEE Transactions on Automatic Control, 54 (2009), 2100. doi: 10.1109/TAC.2009.2026934.

[5]

S. Blazic, D. Matko and G. Geiger, Simple model of a multi-batch driven pipeline,, Mathematics and Computers in Simulation, 64 (2004), 617. doi: 10.1016/j.matcom.2003.11.013.

[6]

F. Bullo, J. Cortes and S. Martinez, Distributed Control of Robotic Networks (In Applied Mathematics Series),, Princeton University Press, (2009).

[7]

M. Chen and D. Georges, Nonlinear optimal control of an open-channel hydraulic system based on an infinite-dimensional model,, in Proceeding of the Conference on Decision and Control, (1999).

[8]

H. Cho and G. Hwang, Optimal design for dynamic spectrum access in cognitive radio networks under rayleigh fading,, Journal of Industrial and Management Optimization, 8 (2012), 821. doi: 10.3934/jimo.2012.8.821.

[9]

E. Chow, L. Hendrix, M. Herberg, S. Itoh, B. Kong, M. Lall and P. Srevens, Pipeline Politics in Asia: The Intersection of Demand, Energy Markets, and Supply Routes,, National Bureau of Asian Research, (2010).

[10]

Y. Ding and S. Wang, Optimal control of open-channel flow using adjoint sensitivity analysis,, Journal of Hydraulic Engineering-ASCE, 132 (2006), 1215. doi: 10.1061/(ASCE)0733-9429(2006)132:11(1215).

[11]

Z. Feng, K. Teo and V. Rehbock, Branch and bound method for sensor scheduling in discrete time,, Journal of Industrial and Management Optimization, 1 (2005), 499. doi: 10.3934/jimo.2005.1.499.

[12]

Z. Feng, K. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time,, Automatica, 44 (2008), 1295. doi: 10.1016/j.automatica.2007.09.024.

[13]

G. Ferrari-Trecate, A. Buffa and M. Gati, Analysis of coordination in multi-agent systems through partial difference equations,, IEEE Transactions on Automatic Control, 51 (2006), 1058. doi: 10.1109/TAC.2006.876805.

[14]

P. Frihauf and M. Krstic, Leader-enabled deployment onto planar curves: A pde-based approach,, IEEE Transactions on Automatic Control, 56 (2011), 1791. doi: 10.1109/TAC.2010.2092210.

[15]

R. Glowinski, J. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach,, (Encyclopedia of Mathematics and its Applications) Cambridge University Press, (2008). doi: 10.1017/CBO9780511721595.

[16]

H. Hao and P. Barooah, On achieving size-independent stability margin of vehicular lattice formations with distributed control,, IEEE Transactions on Automatic Control, 57 (2012), 2688. doi: 10.1109/TAC.2012.2191179.

[17]

H. Hao, P. Barooah and P. Mehta, Stability margin scaling laws for distributed formation control as a function of network structure,, IEEE Transactions on Automatic Control, 56 (2011), 923. doi: 10.1109/TAC.2010.2103416.

[18]

J. Kim, K. Kim, V. Natarajan, S. Kelly and J. Bentsman, PdE-based model reference adaptive control of uncertain heterogeneous multiagent networks,, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1152. doi: 10.1016/j.nahs.2008.09.008.

[19]

J. Kim, V. Natarajan, S. Kelly and J. Bentsman, Disturbance rejection in robust PdE-based MRAC laws for uncertain heterogeneous multiagent networks under boundary reference,, Nonlinear Analysis: Hybrid Systems, 4 (2010), 484. doi: 10.1016/j.nahs.2009.11.005.

[20]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs,, SIAM, (2008). doi: 10.1137/1.9780898718607.

[21]

Z. Lin, Distributed Control and Analysis of Coupled Cell Systems,, VDM Verlag, (2008).

[22]

W. Litvinov, Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions,, Journal of Industrial and Management Optimization, 7 (2011), 291. doi: 10.3934/jimo.2011.7.291.

[23]

M. Liu, S. Zang and D. Zhou, Fast leak detection and location of gas pipelines based on an adaptive particle filter,, International Journal of Applied Mathematics and Computer Science, 15 ().

[24]

M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks (In Applied Mathematics Series),, Princeton University Press, (2010).

[25]

T. Meurer and M. Krstic, Finite-time multi-agent deployment: A nonlinear pde motion planning approach,, Automatica, 47 (2011), 2534. doi: 10.1016/j.automatica.2011.08.045.

[26]

S. Moura and H. Fathy, Optimal boundary control & estimation of diffusion-reaction PDEs,, in Proceeding of the Conference on Decision and Control, (2011), 921.

[27]

R. Murray, Recent research in cooperative control of multi-vehicle systems,, Journal of Dynamical Systems, (): 571.

[28]

R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Transactions on Automatic Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113.

[29]

P. Parfomak, Pipeline Safety and Security: Federal Programs,, Congress Research Services (CRS) Report for Congress, (2008).

[30]

M. Rafiee, Q. Wu and A. Bayen, Kalman filter based estimation of flow states in open channels using Lagrangian sensing,, Proceedings of the Conference on Decision and Control, (2009), 8266. doi: 10.1109/CDC.2009.5400661.

[31]

W. Ren and Y. Cao, Distributed Coordination of Multi-agent Networks,, (Communications and Control Engineering Series) Springer-Verlag, (2011).

[32]

A. Sarlette and R. Sepulchre, A PDE viewpoint on basic properties of coordination algorithms with symmetries,, in Proceedings of the Conference on Decision and Control, (2009), 5139. doi: 10.1109/CDC.2009.5400570.

[33]

J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd Edition,, SIAM, (2004). doi: 10.1137/1.9780898717938.

[34]

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications (Graduate Studies in Mathematics),, American Mathematical Society, (2010).

[35]

G. Wang and H. Ye, Leakage Detection and Localization of Long Distance Fluid Pipelines,, Tsinghua University Press, (2010).

[36]

Z. Wang, H. Zhang, J. Feng and S. Lun, Present situation and prospect on leak detection and localization techniques for long distance fluid transport pipeline,, Control and Instruments in Chemical Industry, 30 (2003), 5.

[37]

S. Woon, V. Rehbock and R. Loxton, Global optimization method for continuous-time sensor scheduling,, Nonlinear Dynamics and Systems Theory, 10 (2010), 175.

[38]

S. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems,, Optimal Control Applications and Methods, 33 (2012), 576. doi: 10.1002/oca.1015.

[39]

K. Yiu, K. Mak and K. Teo, Airfoil design via optimal control theory,, Journal of Industrial and Management Optimization, 1 (2005), 133. doi: 10.3934/jimo.2005.1.133.

[40]

C. Yu, B. Li, R. Loxton and K. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503. doi: 10.1007/s10898-012-9858-7.

show all references

References:
[1]

N. Ahmed and K. Teo, Optimal Control of Distributed Parameter Systems,, North Holland, (1981).

[2]

S. Anita, V. Arnautu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics,, Modeling and Simulation in Science, (2011). doi: 10.1007/978-0-8176-8098-5.

[3]

V. Arnautu and P. Neittaanmaki, Optimal Control from Theory to Computer Programs,, Kluwer Academic, (2003). doi: 10.1007/978-94-017-2488-3.

[4]

P. Barooah, P. Mehta and J. Hespanha, Mistuning-based control design to improve closed-loop stability margin of vehicular platoons,, IEEE Transactions on Automatic Control, 54 (2009), 2100. doi: 10.1109/TAC.2009.2026934.

[5]

S. Blazic, D. Matko and G. Geiger, Simple model of a multi-batch driven pipeline,, Mathematics and Computers in Simulation, 64 (2004), 617. doi: 10.1016/j.matcom.2003.11.013.

[6]

F. Bullo, J. Cortes and S. Martinez, Distributed Control of Robotic Networks (In Applied Mathematics Series),, Princeton University Press, (2009).

[7]

M. Chen and D. Georges, Nonlinear optimal control of an open-channel hydraulic system based on an infinite-dimensional model,, in Proceeding of the Conference on Decision and Control, (1999).

[8]

H. Cho and G. Hwang, Optimal design for dynamic spectrum access in cognitive radio networks under rayleigh fading,, Journal of Industrial and Management Optimization, 8 (2012), 821. doi: 10.3934/jimo.2012.8.821.

[9]

E. Chow, L. Hendrix, M. Herberg, S. Itoh, B. Kong, M. Lall and P. Srevens, Pipeline Politics in Asia: The Intersection of Demand, Energy Markets, and Supply Routes,, National Bureau of Asian Research, (2010).

[10]

Y. Ding and S. Wang, Optimal control of open-channel flow using adjoint sensitivity analysis,, Journal of Hydraulic Engineering-ASCE, 132 (2006), 1215. doi: 10.1061/(ASCE)0733-9429(2006)132:11(1215).

[11]

Z. Feng, K. Teo and V. Rehbock, Branch and bound method for sensor scheduling in discrete time,, Journal of Industrial and Management Optimization, 1 (2005), 499. doi: 10.3934/jimo.2005.1.499.

[12]

Z. Feng, K. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time,, Automatica, 44 (2008), 1295. doi: 10.1016/j.automatica.2007.09.024.

[13]

G. Ferrari-Trecate, A. Buffa and M. Gati, Analysis of coordination in multi-agent systems through partial difference equations,, IEEE Transactions on Automatic Control, 51 (2006), 1058. doi: 10.1109/TAC.2006.876805.

[14]

P. Frihauf and M. Krstic, Leader-enabled deployment onto planar curves: A pde-based approach,, IEEE Transactions on Automatic Control, 56 (2011), 1791. doi: 10.1109/TAC.2010.2092210.

[15]

R. Glowinski, J. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach,, (Encyclopedia of Mathematics and its Applications) Cambridge University Press, (2008). doi: 10.1017/CBO9780511721595.

[16]

H. Hao and P. Barooah, On achieving size-independent stability margin of vehicular lattice formations with distributed control,, IEEE Transactions on Automatic Control, 57 (2012), 2688. doi: 10.1109/TAC.2012.2191179.

[17]

H. Hao, P. Barooah and P. Mehta, Stability margin scaling laws for distributed formation control as a function of network structure,, IEEE Transactions on Automatic Control, 56 (2011), 923. doi: 10.1109/TAC.2010.2103416.

[18]

J. Kim, K. Kim, V. Natarajan, S. Kelly and J. Bentsman, PdE-based model reference adaptive control of uncertain heterogeneous multiagent networks,, Nonlinear Analysis: Hybrid Systems, 2 (2008), 1152. doi: 10.1016/j.nahs.2008.09.008.

[19]

J. Kim, V. Natarajan, S. Kelly and J. Bentsman, Disturbance rejection in robust PdE-based MRAC laws for uncertain heterogeneous multiagent networks under boundary reference,, Nonlinear Analysis: Hybrid Systems, 4 (2010), 484. doi: 10.1016/j.nahs.2009.11.005.

[20]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs,, SIAM, (2008). doi: 10.1137/1.9780898718607.

[21]

Z. Lin, Distributed Control and Analysis of Coupled Cell Systems,, VDM Verlag, (2008).

[22]

W. Litvinov, Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions,, Journal of Industrial and Management Optimization, 7 (2011), 291. doi: 10.3934/jimo.2011.7.291.

[23]

M. Liu, S. Zang and D. Zhou, Fast leak detection and location of gas pipelines based on an adaptive particle filter,, International Journal of Applied Mathematics and Computer Science, 15 ().

[24]

M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks (In Applied Mathematics Series),, Princeton University Press, (2010).

[25]

T. Meurer and M. Krstic, Finite-time multi-agent deployment: A nonlinear pde motion planning approach,, Automatica, 47 (2011), 2534. doi: 10.1016/j.automatica.2011.08.045.

[26]

S. Moura and H. Fathy, Optimal boundary control & estimation of diffusion-reaction PDEs,, in Proceeding of the Conference on Decision and Control, (2011), 921.

[27]

R. Murray, Recent research in cooperative control of multi-vehicle systems,, Journal of Dynamical Systems, (): 571.

[28]

R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays,, IEEE Transactions on Automatic Control, 49 (2004), 1520. doi: 10.1109/TAC.2004.834113.

[29]

P. Parfomak, Pipeline Safety and Security: Federal Programs,, Congress Research Services (CRS) Report for Congress, (2008).

[30]

M. Rafiee, Q. Wu and A. Bayen, Kalman filter based estimation of flow states in open channels using Lagrangian sensing,, Proceedings of the Conference on Decision and Control, (2009), 8266. doi: 10.1109/CDC.2009.5400661.

[31]

W. Ren and Y. Cao, Distributed Coordination of Multi-agent Networks,, (Communications and Control Engineering Series) Springer-Verlag, (2011).

[32]

A. Sarlette and R. Sepulchre, A PDE viewpoint on basic properties of coordination algorithms with symmetries,, in Proceedings of the Conference on Decision and Control, (2009), 5139. doi: 10.1109/CDC.2009.5400570.

[33]

J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd Edition,, SIAM, (2004). doi: 10.1137/1.9780898717938.

[34]

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications (Graduate Studies in Mathematics),, American Mathematical Society, (2010).

[35]

G. Wang and H. Ye, Leakage Detection and Localization of Long Distance Fluid Pipelines,, Tsinghua University Press, (2010).

[36]

Z. Wang, H. Zhang, J. Feng and S. Lun, Present situation and prospect on leak detection and localization techniques for long distance fluid transport pipeline,, Control and Instruments in Chemical Industry, 30 (2003), 5.

[37]

S. Woon, V. Rehbock and R. Loxton, Global optimization method for continuous-time sensor scheduling,, Nonlinear Dynamics and Systems Theory, 10 (2010), 175.

[38]

S. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems,, Optimal Control Applications and Methods, 33 (2012), 576. doi: 10.1002/oca.1015.

[39]

K. Yiu, K. Mak and K. Teo, Airfoil design via optimal control theory,, Journal of Industrial and Management Optimization, 1 (2005), 133. doi: 10.3934/jimo.2005.1.133.

[40]

C. Yu, B. Li, R. Loxton and K. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503. doi: 10.1007/s10898-012-9858-7.

[1]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[2]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[3]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[4]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

[5]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations & Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[6]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[7]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[8]

Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 605-618. doi: 10.3934/dcdsb.2007.7.605

[9]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[10]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[11]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[12]

Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial & Management Optimization, 2014, 10 (3) : 817-826. doi: 10.3934/jimo.2014.10.817

[13]

Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428

[14]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[15]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[16]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[17]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[18]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[19]

Jorge San Martín, Takéo Takahashi, Marius Tucsnak. An optimal control approach to ciliary locomotion. Mathematical Control & Related Fields, 2016, 6 (2) : 293-334. doi: 10.3934/mcrf.2016005

[20]

K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences & Engineering, 2005, 2 (3) : 499-510. doi: 10.3934/mbe.2005.2.499

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (4)

[Back to Top]