October  2015, 11(4): 1409-1422. doi: 10.3934/jimo.2015.11.1409

Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls

1. 

Department of Mathematics, Guizhou University, Guizhou, 550025, China, China

Received  February 2014 Revised  October 2014 Published  March 2015

In this paper, the existence and stability of solutions of nonlinear optimal control problems with $1$-mean equicontinuous controls are discussed. In particular, a new existence theorem is obtained without convexity assumption. We investigate the stability of the optimal control problem with respect to the right-hand side functions, which is important in computational methods for optimal control problems when the function is approximated by a new function. Due to lack of uniqueness of solutions for an optimal control problem, the stability results for a class of optimal control problems with the measurable admissible control set is given based on the theory of set-valued mappings and the definition of essential solutions for optimal control problems. We show that the optimal control problems, whose solutions are all essential, form a dense residual set, and so every optimal control problem can be closely approximated arbitrarily by an essential optimal control problem.
Citation: Hongyong Deng, Wei Wei. Existence and stability analysis for nonlinear optimal control problems with $1$-mean equicontinuous controls. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1409-1422. doi: 10.3934/jimo.2015.11.1409
References:
[1]

N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems,, Elsevier North Holland, (1981). Google Scholar

[2]

J. P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhauser, (1990). Google Scholar

[3]

V. I. Bogachev, Measure Theory ,, Springer-Verlag, (2007). doi: 10.1007/978-3-540-34514-5. Google Scholar

[4]

J. F. Bonnans and A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods,, ESAIM Control Optim. Calc. Var., 14 (2008), 825. doi: 10.1051/cocv:2008016. Google Scholar

[5]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences Press, (2007). Google Scholar

[6]

A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control,, SIAM J. Control Optim., 36 (1998), 698. doi: 10.1137/S0363012996299314. Google Scholar

[7]

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173. doi: 10.1090/S0025-5718-00-01184-4. Google Scholar

[8]

H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem,, Expositiones Mathematicae, 28 (2010), 385. doi: 10.1016/j.exmath.2010.03.001. Google Scholar

[9]

A. Hermant, Stability analysis of optimal control problems with a second-order constraint,, SIAM J. Control Optim., 20 (2009), 104. doi: 10.1137/070707993. Google Scholar

[10]

E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons Inc., (1978). Google Scholar

[11]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems,, Birkhauser, (1995). doi: 10.1007/978-1-4612-4260-4. Google Scholar

[12]

Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275. doi: 10.3934/jimo.2014.10.275. Google Scholar

[13]

R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constrains: New convergence results,, Numerical Algebra, 2 (2012), 571. doi: 10.3934/naco.2012.2.571. Google Scholar

[14]

R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control,, Automatica, 49 (2013), 2652. doi: 10.1016/j.automatica.2013.05.027. Google Scholar

[15]

W. Rudin, Functional Analysis,, $2^{nd}$ edition. McGraw-Hill, (1991). Google Scholar

[16]

S. Sager, H. G. Bock and G. Reinelt, Direct methods with maximal lower bound for mixed-integer optimal control problems,, Mathematical Programming, 118 (2009), 109. doi: 10.1007/s10107-007-0185-6. Google Scholar

[17]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, New York: John Wiley & Sons Inc., (1991). Google Scholar

[18]

S. F. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems,, Optimal Control Applications and Methods, 33 (2012), 576. doi: 10.1002/oca.1015. Google Scholar

[19]

C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503. doi: 10.1007/s10898-012-9858-7. Google Scholar

[20]

J. Yu, Z. X. Liu and D. T. Peng, Existence and stability analysis of optimal control,, Optimal Control Applications and Methods, 35 (2014), 721. doi: 10.1002/oca.2096. Google Scholar

[21]

E. Zeidler, Functional and Its Applications II/B,, Springer-Verlag, (1990). Google Scholar

show all references

References:
[1]

N. U. Ahmed and K. L. Teo, Optimal Control of Distributed Parameter Systems,, Elsevier North Holland, (1981). Google Scholar

[2]

J. P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhauser, (1990). Google Scholar

[3]

V. I. Bogachev, Measure Theory ,, Springer-Verlag, (2007). doi: 10.1007/978-3-540-34514-5. Google Scholar

[4]

J. F. Bonnans and A. Hermant, Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods,, ESAIM Control Optim. Calc. Var., 14 (2008), 825. doi: 10.1051/cocv:2008016. Google Scholar

[5]

A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control,, American Institute of Mathematical Sciences Press, (2007). Google Scholar

[6]

A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlinear optimal control,, SIAM J. Control Optim., 36 (1998), 698. doi: 10.1137/S0363012996299314. Google Scholar

[7]

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,, Math. Comp., 70 (2001), 173. doi: 10.1090/S0025-5718-00-01184-4. Google Scholar

[8]

H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem,, Expositiones Mathematicae, 28 (2010), 385. doi: 10.1016/j.exmath.2010.03.001. Google Scholar

[9]

A. Hermant, Stability analysis of optimal control problems with a second-order constraint,, SIAM J. Control Optim., 20 (2009), 104. doi: 10.1137/070707993. Google Scholar

[10]

E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons Inc., (1978). Google Scholar

[11]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems,, Birkhauser, (1995). doi: 10.1007/978-1-4612-4260-4. Google Scholar

[12]

Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey,, Journal of Industrial and Management Optimization, 10 (2014), 275. doi: 10.3934/jimo.2014.10.275. Google Scholar

[13]

R. Loxton, Q. Lin, V. Rehbock and K. L. Teo, Control parameterization for optimal control problems with continuous inequality constrains: New convergence results,, Numerical Algebra, 2 (2012), 571. doi: 10.3934/naco.2012.2.571. Google Scholar

[14]

R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control,, Automatica, 49 (2013), 2652. doi: 10.1016/j.automatica.2013.05.027. Google Scholar

[15]

W. Rudin, Functional Analysis,, $2^{nd}$ edition. McGraw-Hill, (1991). Google Scholar

[16]

S. Sager, H. G. Bock and G. Reinelt, Direct methods with maximal lower bound for mixed-integer optimal control problems,, Mathematical Programming, 118 (2009), 109. doi: 10.1007/s10107-007-0185-6. Google Scholar

[17]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, New York: John Wiley & Sons Inc., (1991). Google Scholar

[18]

S. F. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems,, Optimal Control Applications and Methods, 33 (2012), 576. doi: 10.1002/oca.1015. Google Scholar

[19]

C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation,, Journal of Global Optimization, 56 (2013), 503. doi: 10.1007/s10898-012-9858-7. Google Scholar

[20]

J. Yu, Z. X. Liu and D. T. Peng, Existence and stability analysis of optimal control,, Optimal Control Applications and Methods, 35 (2014), 721. doi: 10.1002/oca.2096. Google Scholar

[21]

E. Zeidler, Functional and Its Applications II/B,, Springer-Verlag, (1990). Google Scholar

[1]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[2]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[3]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[4]

Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57

[5]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[6]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[7]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[8]

Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1

[9]

Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246

[10]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[11]

Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548

[12]

Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309

[13]

Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435

[14]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[15]

Yumei Liao, Wei Wei, Xianbing Luo. Existence of solution of a microwave heating model and associated optimal frequency control problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019045

[16]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[17]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[18]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[19]

Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745

[20]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]