October  2015, 11(4): 1275-1283. doi: 10.3934/jimo.2015.11.1275

Portfolio optimization using a new probabilistic risk measure

1. 

Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, WA 6102, Australia, Australia, Australia, Australia

Received  February 2014 Revised  September 2014 Published  March 2015

In this paper, we introduce a new portfolio selection method. Our method is innovative and flexible. An explicit solution is obtained, and the selection method allows for investors with different degree of risk aversion. The portfolio selection problem is formulated as a bi-criteria optimization problem which maximizes the expected portfolio return and minimizes the maximum individual risk of the assets in the portfolio. The efficient frontier using our method is compared with various efficient frontiers in the literature and found to be superior to others in the mean-variance space.
Citation: Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275
References:
[1]

P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203. doi: 10.1111/1467-9965.00068. Google Scholar

[2]

X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule,, Management Science, 46 (2000), 957. doi: 10.1287/mnsc.46.7.957.12039. Google Scholar

[3]

X. T. Cui, S. S. Zhu, X. L. Sun and D. Li, Nonlinear portfolio selection using approximate parametric Value-at-Risk,, Journal of Banking & Finance, 37 (2013), 2124. doi: 10.1016/j.jbankfin.2013.01.036. Google Scholar

[4]

X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium,, European Journal of Operational Research, 166 (2005), 278. doi: 10.1016/j.ejor.2004.01.040. Google Scholar

[5]

H. Konno, Piecewise linear risk function and portfolio optimization,, Journal of the Operations Research Society of Japan, 33 (1990), 139. Google Scholar

[6]

H. Konno and K. Suzuki, A mean-variance-skewness optimization model,, Journal of the Operations Research Society of Japan, 38 (1995), 137. Google Scholar

[7]

H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market,, Management Science, 37 (1991), 519. doi: 10.1287/mnsc.37.5.519. Google Scholar

[8]

X. Li and Z. Y. Wu, Dynamic downside risk measure and optimal asset allocation,, Presented at FMA., (). Google Scholar

[9]

P. C. Lin, Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm,, Journal Of Industrial And Management Optimization, 8 (2012), 549. doi: 10.3934/jimo.2012.8.549. Google Scholar

[10]

H. Markowitz, Portfolio Selection,, The Journal of Finance, 7 (1952), 77. Google Scholar

[11]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investment,, John Wiley & Sons, (1959). Google Scholar

[12]

G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization,, European Journal of Operational Research, 207 (2010), 409. doi: 10.1016/j.ejor.2010.04.025. Google Scholar

[13]

K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function,, Annals of Operations Research, 101 (2001), 333. doi: 10.1023/A:1010909632198. Google Scholar

[14]

T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems,, John Wiley & Sons, (1981). Google Scholar

[15]

H. X. Yao, Z. F. Li and Y. Z. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework,, Computers and Operations Research, 40 (2013), 1014. doi: 10.1016/j.cor.2012.11.007. Google Scholar

show all references

References:
[1]

P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203. doi: 10.1111/1467-9965.00068. Google Scholar

[2]

X. Q. Cai, K. L. Teo, X. Q. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule,, Management Science, 46 (2000), 957. doi: 10.1287/mnsc.46.7.957.12039. Google Scholar

[3]

X. T. Cui, S. S. Zhu, X. L. Sun and D. Li, Nonlinear portfolio selection using approximate parametric Value-at-Risk,, Journal of Banking & Finance, 37 (2013), 2124. doi: 10.1016/j.jbankfin.2013.01.036. Google Scholar

[4]

X. T. Deng, Z. F. Li and S. Y. Wang, A minimax portfolio selection strategy with equilibrium,, European Journal of Operational Research, 166 (2005), 278. doi: 10.1016/j.ejor.2004.01.040. Google Scholar

[5]

H. Konno, Piecewise linear risk function and portfolio optimization,, Journal of the Operations Research Society of Japan, 33 (1990), 139. Google Scholar

[6]

H. Konno and K. Suzuki, A mean-variance-skewness optimization model,, Journal of the Operations Research Society of Japan, 38 (1995), 137. Google Scholar

[7]

H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market,, Management Science, 37 (1991), 519. doi: 10.1287/mnsc.37.5.519. Google Scholar

[8]

X. Li and Z. Y. Wu, Dynamic downside risk measure and optimal asset allocation,, Presented at FMA., (). Google Scholar

[9]

P. C. Lin, Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm,, Journal Of Industrial And Management Optimization, 8 (2012), 549. doi: 10.3934/jimo.2012.8.549. Google Scholar

[10]

H. Markowitz, Portfolio Selection,, The Journal of Finance, 7 (1952), 77. Google Scholar

[11]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investment,, John Wiley & Sons, (1959). Google Scholar

[12]

G. G. Polak, D. F. Rogers and D. J. Sweeney, Risk management strategies via minimax portfolio optimization,, European Journal of Operational Research, 207 (2010), 409. doi: 10.1016/j.ejor.2010.04.025. Google Scholar

[13]

K. L. Teo and X. Q. Yang, Portfolio selection problem with minimax type risk function,, Annals of Operations Research, 101 (2001), 333. doi: 10.1023/A:1010909632198. Google Scholar

[14]

T. L. Vincent and W. J. Grantham, Optimality in Parametric Systems,, John Wiley & Sons, (1981). Google Scholar

[15]

H. X. Yao, Z. F. Li and Y. Z. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework,, Computers and Operations Research, 40 (2013), 1014. doi: 10.1016/j.cor.2012.11.007. Google Scholar

[1]

Peng Zhang. Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection. Journal of Industrial & Management Optimization, 2019, 15 (2) : 537-564. doi: 10.3934/jimo.2018056

[2]

Li Xue, Hao Di. Uncertain portfolio selection with mental accounts and background risk. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1809-1830. doi: 10.3934/jimo.2018124

[3]

Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33

[4]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[5]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[6]

Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial & Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549

[7]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018177

[8]

Jianguo Dai, Wenxue Huang, Yuanyi Pan. A category-based probabilistic approach to feature selection. Big Data & Information Analytics, 2017, 2 (5) : 1-8. doi: 10.3934/bdia.2017020

[9]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[10]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[11]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[12]

Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019032

[13]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[14]

Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041

[15]

Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055

[16]

Ana F. Carazo, Ignacio Contreras, Trinidad Gómez, Fátima Pérez. A project portfolio selection problem in a group decision-making context. Journal of Industrial & Management Optimization, 2012, 8 (1) : 243-261. doi: 10.3934/jimo.2012.8.243

[17]

Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483

[18]

Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial & Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059

[19]

Zhifeng Dai, Huan Zhu, Fenghua Wen. Two nonparametric approaches to mean absolute deviation portfolio selection model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019054

[20]

Yue Qi, Zhihao Wang, Su Zhang. On analyzing and detecting multiple optima of portfolio optimization. Journal of Industrial & Management Optimization, 2018, 14 (1) : 309-323. doi: 10.3934/jimo.2017048

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]