• Previous Article
    Comparative analysis of supply chain financing strategies between different financing modes
  • JIMO Home
  • This Issue
  • Next Article
    Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem
October  2015, 11(4): 1089-1110. doi: 10.3934/jimo.2015.11.1089

An interactive MOLP method for solving output-oriented DEA problems with undesirable factors

1. 

Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr 47651-61964, Iran

2. 

Business Systems and Analytics Department, Lindback Distinguished Chair of Information Systems and Decision Sciences, La Salle University, Philadelphia, PA 19141, United States, Business Information Systems Department, Faculty of Business Administration and Economics, University of Paderborn, D-33098 Paderborn, Germany

3. 

Department of Mathematics, University of Mazandaran, Babolsar 47416-95447, Iran

Received  April 2014 Revised  July 2014 Published  March 2015

Data Envelopment Analysis (DEA) and Multiple Objective Linear Programming (MOLP) are widely used for performance assessment in organizations. Although DEA and MOLP are similar in structure, DEA is used to assess and analyze past performance and MOLP is used to predict future performance. Several equivalence models between output-oriented DEA models and MOLP models have been proposed in the literature. However these models are not applicable to performance evaluation problems with undesirable outputs. We propose an interactive method for solving output-oriented DEA models with undesirable outputs. We show that the output-oriented BCC model of Seiford and Zhu [47] can be equivalently stated as the maximization of the minimum of several objectives over the production possibility set, which in turn is a scalarization of a multi-objective linear program. We then employ the well-known Zionts-Wallenius procedure to solve the multi-objective optimization problem. We present an example to demonstrate the applicability of the proposed method and exhibit the efficacy of the procedures and algorithms.
Citation: Ali Ebrahimnejad, Madjid Tavana, Seyed Mehdi Mansourzadeh. An interactive MOLP method for solving output-oriented DEA problems with undesirable factors. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1089-1110. doi: 10.3934/jimo.2015.11.1089
References:
[1]

R. Allen, A. Athanassopoulis, R. G. Dyson and E. Thanassoulis, Weights restrictions and value judgements in data envelopment analysis: Evolution, development and future directions,, Annals of Operations Research, 73 (1997), 13. Google Scholar

[2]

A. Amirteimoori and S. Kordrostami, An alternative clustering approach: a DEA-based procedure,, Optimization: A Journal of Mathematical Programming and Operations Research, 62 (2013), 227. doi: 10.1080/02331934.2011.585466. Google Scholar

[3]

J. Aparicio, J. L. Ruiz and I. Sirvent, Closest targets and minimum distance to the Pareto-efficient frontier in DEA,, Journal of Productivity Analysis, 28 (2007), 209. doi: 10.1007/s11123-007-0039-5. Google Scholar

[4]

M. Asmild, J. C. Paradi, D. N. Reese and F. Tam, Measuring overall efficiency and effectiveness using DEA,, European Journal of Operational Research, 178 (2007), 305. doi: 10.1016/j.ejor.2006.01.014. Google Scholar

[5]

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis,, Management Science, 30 (1984), 1078. doi: 10.1287/mnsc.30.9.1078. Google Scholar

[6]

C. P. Barros, S. Managi and R. Matousek, The technical efficiency of Japanese banks: Non radial directional performance measurement with undesirable output,, Omega, 40 (2012), 1. doi: 10.1016/j.omega.2011.02.005. Google Scholar

[7]

G. Bi, J. Ding, Y. Luo and L. Liang, Resource allocation and target setting for parallel production system based on DEA,, Applied Mathematical Modelling, 35 (2011), 4270. doi: 10.1016/j.apm.2011.02.048. Google Scholar

[8]

R. Benayoun, J. Montgolfier, J. Tergny and O. Laritchev, Linear programming with multiple objective functions: Step method (STEM),, Mathematical Programming, 1 (1971), 366. doi: 10.1007/BF01584098. Google Scholar

[9]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429. doi: 10.1016/0377-2217(78)90138-8. Google Scholar

[10]

A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks,, Journal of Econometrics, 46 (1990), 73. doi: 10.1016/0304-4076(90)90048-X. Google Scholar

[11]

R. G. Dyson and E. Thannassoulis, Reducing weight flexibility in data envelopment analysis,, Journal of Operational Research Society, 39 (1988), 563. doi: 10.2307/2582861. Google Scholar

[12]

A. Ebrahimnejad, A new link between output-oriented BCC model with fuzzy data in the present of undesirable outputs and MOLP,, Fuzzy Information and Engineering, 3 (2011), 113. doi: 10.1007/s12543-011-0070-0. Google Scholar

[13]

A. Ebrahimnejad, R. Shahverdi, F. Rezai Balf and M. Hatefi, Finding target units in FDH model by least-distance measure model,, Measurement, 49 (2013), 619. Google Scholar

[14]

A. Ebrahimnejad, M. Tavana, F. Hosseinzadeh Lotfi, R. Shahverdi and M. Yousefpour, A three-stage data envelopment analysis model with application to banking industry,, Measurement, 49 (2014), 308. doi: 10.1016/j.measurement.2013.11.043. Google Scholar

[15]

A. Ebrahimnejad and M. Tavana, An interactive MOLP method for identifying target units in Output-Oriented DEA models: The NATO enlargement problem,, Measurement, 52 (2014), 124. doi: 10.1016/j.measurement.2014.03.016. Google Scholar

[16]

M. Ehrgott, Multicriteria Optimization,, $2^{nd}$ edition, (2005). Google Scholar

[17]

R. Fare and S. Grosskopf, Modelling undesirable factors in efficiency evaluation: Comment,, European Journal of Operational Research, 157 (2004), 242. doi: 10.1016/S0377-2217(03)00191-7. Google Scholar

[18]

R. Fare, S. Grosskopf, C. A. K. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach,, The Review of Economics and Statistics, 71 (1989), 90. doi: 10.2307/1928055. Google Scholar

[19]

R. Fare, S. Grosskopf and C. Pasurka, Accounting for air pollution emissions in measures of state manufacturing productivity growth,, Journal of Regional Science, 41 (2001), 381. doi: 10.1111/0022-4146.00223. Google Scholar

[20]

A. M. Geoffrion, J. S. Dyer and A. Feinberg, An interactive approach for multi-criterion optimization with an application to the operation of an academic department, Part I,, Management Science, 19 (1972), 357. Google Scholar

[21]

B. Golany, An interactive MOLP procedure for the extension of DEA to effectiveness analysis,, Journal of the Operational Research Society, 39 (1988), 725. doi: 10.2307/2583767. Google Scholar

[22]

M. A. Hinojosa and A. M. Mármol, Axial solutions for multiple objective linear problems. An application to target setting in DEA models with preferences,, Omega, 39 (2011), 159. doi: 10.1016/j.omega.2010.06.001. Google Scholar

[23]

F. Hosseinzadeh Lotfi, G. R. Jahanshaloo, A. Ebrahimnejad, M. Soltanifar and S. M. Manosourzadeh, Target setting in the general combined-oriented CCR model using an interactive MOLP method,, Journal of Computational and Applied Mathematics, 234 (2010), 1. doi: 10.1016/j.cam.2009.11.045. Google Scholar

[24]

F. Hosseinzadeh Lotfi, G. R. Jahanshaloo, M. Soltanifar, A. Ebrahimnejad and S. M. Manosourzadeh, Relationship between MOLP and DEA based on output-orientated CCR dual model,, Expert Systems with Applications, 37 (2010), 4331. doi: 10.1016/j.eswa.2009.11.066. Google Scholar

[25]

H. H. Hu, Q. Qi and C. H. Yang, Evaluation of China's regional hospital efficiency: DEA approach with undesirable output,, Journal of the Operational Research Society, 63 (2011), 715. doi: 10.1057/jors.2011.77. Google Scholar

[26]

Z. S. Hua, Y. W. Bian and L. Liang, Eco-efficiency analysis of paper mills along the Huai River: An extended DEA approach,, Omega, 35 (2007), 578. doi: 10.1016/j.omega.2005.11.001. Google Scholar

[27]

X. Huang, D. Hu and Z. Zhou, Measuring efficiency in Chinese commercial banks using a DEA model with undesirable output,, International Journal of Information and Decision Sciences, 5 (2013), 140. doi: 10.1504/IJIDS.2013.053801. Google Scholar

[28]

S. Jain, K. P. Triantis and S. Liu, Manufacturing performance measurement and target setting: A data envelopment analysis approach,, European Journal of Operational Research, 214 (2011), 616. doi: 10.1016/j.ejor.2011.05.028. Google Scholar

[29]

A. Jess, H. Th. Jongen, L. Neralic and O. Stein, A semi-infinite programming model in data envelopment analysis,, European Journal of Operational Research, 49 (2001), 369. doi: 10.1080/02331930108844538. Google Scholar

[30]

P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: an extension of data envelopment analysis,, European Journal of Operational Research, 154 (2004), 437. doi: 10.1016/S0377-2217(03)00180-2. Google Scholar

[31]

P. Korhonen, S. Stenfors and M. Syrjänen, Multiple objective approach as an alternative to radial projection in DEA,, Journal of Productivity Analysis, 20 (2003), 305. Google Scholar

[32]

S. Kumar Mandal and S. Madheswaran, Environmental efficiency of the Indian cement industry: An interstate analysis,, Energy Policy, 38 (2010), 1108. Google Scholar

[33]

H. F. Lewis and T. R. Sexton, Data envelopment analysis with reverse inputs and outputs,, Journal of Productivity Analysis, 21 (2004), 113. doi: 10.1023/B:PROD.0000016868.69586.b4. Google Scholar

[34]

Y. Liu and U. R. Sumaila, Estimating pollution abatement costs of salmon aquaculture: A joint production approach,, Land Economics, 86 (2010), 569. Google Scholar

[35]

C. A. K. Lovell, J. T. Pastor and J. A. Turner, Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries,, European Journal of Operational Research, 87 (1995), 507. Google Scholar

[36]

S. Lozano and E. Gutierrez, Efficiency analysis and target setting of Spanish airports,, Netw. Spat. Econ., 11 (2011), 139. doi: 10.1007/s11067-008-9096-1. Google Scholar

[37]

W. M. Lu and S. F. Lo, A closer look at the economic-environmental disparities for regional development in China,, European Journal of Operational Research, 183 (2007), 882. doi: 10.1016/j.ejor.2006.10.027. Google Scholar

[38]

M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for customer value analysis,, Journal of Industrial and Management Optimization, 7 (2011), 531. doi: 10.3934/jimo.2011.7.531. Google Scholar

[39]

N. Malekmohammadi, F. Hosseinzadeh Lotfi and A. B. Jaafar, Target setting in data envelopment analysis using MOLP,, Applied Mathematical Modelling, 35 (2011), 328. doi: 10.1016/j.apm.2010.06.007. Google Scholar

[40]

H. Nakayama and Y. Sawaragi, Satisficing trade-off method for multiobjective programming. An interactive decision analysis,, in Lecture notes in economics and mathematical systems (eds. M. Grauer and A.P. Wierzbicki), 229 (1984), 113. doi: 10.1007/978-3-662-00184-4_13. Google Scholar

[41]

F. Pedraja-Chaparro, J. Salinas-Jimenez and P. Smith, On the role of weight restrictions in data envelopment analysis,, Journal of Productivity Analysis, 8 (1997), 215. Google Scholar

[42]

V. V. Podinovski, Suitability and redundancy of non-homogeneous weight restrictions for measuring the relative efficiency in DEA,, European Journal of Operational Research, 154 (2004), 380. doi: 10.1016/S0377-2217(03)00176-0. Google Scholar

[43]

S. Reinhard, C. A. K. Lovell and G. Thijssen, Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA,, European Journal of Operational Research, 121 (2000), 287. doi: 10.1016/S0377-2217(99)00218-0. Google Scholar

[44]

S. Reinhard and G. Thijssen, Nitrogen efficiency of Dutch dairy farms: A shadow cost system approach,, European Review of Agricultural Economics, 27 (2000), 167. doi: 10.1093/erae/27.2.167. Google Scholar

[45]

R. Riccardi, G. Oggioni and R. Toninelli, Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function,, Energy Policy, 44 (2012), 140. doi: 10.1016/j.enpol.2012.01.030. Google Scholar

[46]

S. Saati, A. Hatami-Marbini, P. J. Agrell and M. Tavana, A common set of weight approach using an ideal decision making unit in data envelopment analysis,, Journal of Industrial and Management Optimization, 8 (2012), 623. doi: 10.3934/jimo.2012.8.623. Google Scholar

[47]

M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation,, European Journal of Operational Research, 142 (2002), 16. doi: 10.1016/S0377-2217(01)00293-4. Google Scholar

[48]

S. Shaik, G. A. Helmers and M. R. Langemeier, Direct and indirect shadow price and cost estimates of nitrogen pollution abatement,, Journal of Agricultural and Resource Economics, 27 (2002), 420. Google Scholar

[49]

T. Sueyoshi and M. Goto, Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry,, European Journal of Operational Research, 216 (2012), 668. doi: 10.1016/j.ejor.2011.07.046. Google Scholar

[50]

E. Thanassoulis, A. Boussofiane and R. G. Dyson, Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis,, European Journal of Operational Research, 80 (1995), 588. doi: 10.1016/0377-2217(94)00139-4. Google Scholar

[51]

R. G. Thompson, P. S. Dharmapala and R. M. Thrall, Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines,, International Journal of Production Economics, 39 (1995), 99. doi: 10.1016/0925-5273(94)00064-H. Google Scholar

[52]

R. G. Thompson, L. N. Langemeier, C. T. Lee and R. M. Thrall, The role of multiplier bounds in efficiency analysis with application to Kansas farming,, Journal of Econometrics, 46 (1990), 93. doi: 10.1016/0304-4076(90)90049-Y. Google Scholar

[53]

R. G. Thompson, F. D. Singleton Jr, R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas,, Interfaces, 16 (1986), 35. doi: 10.1287/inte.16.6.35. Google Scholar

[54]

K. Tone, On returns to scale under weight restrictions in data envelopment analysis,, Journal of Productivity Analysis, 16 (2001), 31. Google Scholar

[55]

A. P. Wierzbick, The use of reference objectives in multiobjective optimization,, in Multiple criteria decision making theory and application. Lecture notes in economics and mathematics systems (eds. G. Fandel and T. Gal), (1980), 468. Google Scholar

[56]

Y. H. B. Wong and J. E. Beasley, Restricting weight flexibility in data envelopment analysis,, Journal of the Operational Research Society, 41 (1990), 829. doi: 10.2307/2583498. Google Scholar

[57]

H. Yang and M. Pollitt, Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants,, European Journal of Operational Research, 197 (2009), 1095. doi: 10.1016/j.ejor.2007.12.052. Google Scholar

[58]

J. B. Yang, B. Y. H. Wong, D. L. Xu and T. J. Stewart, Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods,, European Journal of Operational Research, 195 (2009), 205. doi: 10.1016/j.ejor.2008.01.013. Google Scholar

[59]

J. B. Yang, B. Y. H. Wong, D. L. Xu, X. B. Liu and R. E. Steuer, Integrated bank performance assessment and management planning using hybrid minimax reference point DEA approach,, European Journal of Operational Research, 207 (2010), 1506. doi: 10.1016/j.ejor.2010.07.001. Google Scholar

[60]

J. B. Yang and D. L. Xu, Interactive minimax optimisation for integrated performance analysis and resource planning,, Computers and Operations Research, 46 (2014), 78. doi: 10.1016/j.cor.2014.01.002. Google Scholar

[61]

J. B. Yang, D. L. Xu and S. Yang, Integrated efficiency and trade-off analyses using a DEA-oriented interactive minimax reference point approach,, Computers and Operations Research, 39 (2012), 1062. doi: 10.1016/j.cor.2011.07.001. Google Scholar

[62]

S. You and H. Yan, A new approach in modelling undesirable output in DEA model,, Journal of the Operational Research Society, 62 (2011), 2146. doi: 10.1057/jors.2011.1. Google Scholar

[63]

M. M. Yu, Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors,, Journal of Air Transport Management, 10 (2004), 295. doi: 10.1016/j.jairtraman.2004.04.001. Google Scholar

[64]

S. Zionts and J. Wallenius, An interactive programming method for solving the multiple criteria problem,, Management Science, 22 (1976), 652. doi: 10.1287/mnsc.22.6.652. Google Scholar

[65]

P. Zhou, P. W. Ang and K. L. Poh, Measuring environmental performance under different environmental DEA technologies,, Energy Economics, 30 (2008), 1. doi: 10.1016/j.eneco.2006.05.001. Google Scholar

show all references

References:
[1]

R. Allen, A. Athanassopoulis, R. G. Dyson and E. Thanassoulis, Weights restrictions and value judgements in data envelopment analysis: Evolution, development and future directions,, Annals of Operations Research, 73 (1997), 13. Google Scholar

[2]

A. Amirteimoori and S. Kordrostami, An alternative clustering approach: a DEA-based procedure,, Optimization: A Journal of Mathematical Programming and Operations Research, 62 (2013), 227. doi: 10.1080/02331934.2011.585466. Google Scholar

[3]

J. Aparicio, J. L. Ruiz and I. Sirvent, Closest targets and minimum distance to the Pareto-efficient frontier in DEA,, Journal of Productivity Analysis, 28 (2007), 209. doi: 10.1007/s11123-007-0039-5. Google Scholar

[4]

M. Asmild, J. C. Paradi, D. N. Reese and F. Tam, Measuring overall efficiency and effectiveness using DEA,, European Journal of Operational Research, 178 (2007), 305. doi: 10.1016/j.ejor.2006.01.014. Google Scholar

[5]

R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis,, Management Science, 30 (1984), 1078. doi: 10.1287/mnsc.30.9.1078. Google Scholar

[6]

C. P. Barros, S. Managi and R. Matousek, The technical efficiency of Japanese banks: Non radial directional performance measurement with undesirable output,, Omega, 40 (2012), 1. doi: 10.1016/j.omega.2011.02.005. Google Scholar

[7]

G. Bi, J. Ding, Y. Luo and L. Liang, Resource allocation and target setting for parallel production system based on DEA,, Applied Mathematical Modelling, 35 (2011), 4270. doi: 10.1016/j.apm.2011.02.048. Google Scholar

[8]

R. Benayoun, J. Montgolfier, J. Tergny and O. Laritchev, Linear programming with multiple objective functions: Step method (STEM),, Mathematical Programming, 1 (1971), 366. doi: 10.1007/BF01584098. Google Scholar

[9]

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429. doi: 10.1016/0377-2217(78)90138-8. Google Scholar

[10]

A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks,, Journal of Econometrics, 46 (1990), 73. doi: 10.1016/0304-4076(90)90048-X. Google Scholar

[11]

R. G. Dyson and E. Thannassoulis, Reducing weight flexibility in data envelopment analysis,, Journal of Operational Research Society, 39 (1988), 563. doi: 10.2307/2582861. Google Scholar

[12]

A. Ebrahimnejad, A new link between output-oriented BCC model with fuzzy data in the present of undesirable outputs and MOLP,, Fuzzy Information and Engineering, 3 (2011), 113. doi: 10.1007/s12543-011-0070-0. Google Scholar

[13]

A. Ebrahimnejad, R. Shahverdi, F. Rezai Balf and M. Hatefi, Finding target units in FDH model by least-distance measure model,, Measurement, 49 (2013), 619. Google Scholar

[14]

A. Ebrahimnejad, M. Tavana, F. Hosseinzadeh Lotfi, R. Shahverdi and M. Yousefpour, A three-stage data envelopment analysis model with application to banking industry,, Measurement, 49 (2014), 308. doi: 10.1016/j.measurement.2013.11.043. Google Scholar

[15]

A. Ebrahimnejad and M. Tavana, An interactive MOLP method for identifying target units in Output-Oriented DEA models: The NATO enlargement problem,, Measurement, 52 (2014), 124. doi: 10.1016/j.measurement.2014.03.016. Google Scholar

[16]

M. Ehrgott, Multicriteria Optimization,, $2^{nd}$ edition, (2005). Google Scholar

[17]

R. Fare and S. Grosskopf, Modelling undesirable factors in efficiency evaluation: Comment,, European Journal of Operational Research, 157 (2004), 242. doi: 10.1016/S0377-2217(03)00191-7. Google Scholar

[18]

R. Fare, S. Grosskopf, C. A. K. Lovell and C. Pasurka, Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach,, The Review of Economics and Statistics, 71 (1989), 90. doi: 10.2307/1928055. Google Scholar

[19]

R. Fare, S. Grosskopf and C. Pasurka, Accounting for air pollution emissions in measures of state manufacturing productivity growth,, Journal of Regional Science, 41 (2001), 381. doi: 10.1111/0022-4146.00223. Google Scholar

[20]

A. M. Geoffrion, J. S. Dyer and A. Feinberg, An interactive approach for multi-criterion optimization with an application to the operation of an academic department, Part I,, Management Science, 19 (1972), 357. Google Scholar

[21]

B. Golany, An interactive MOLP procedure for the extension of DEA to effectiveness analysis,, Journal of the Operational Research Society, 39 (1988), 725. doi: 10.2307/2583767. Google Scholar

[22]

M. A. Hinojosa and A. M. Mármol, Axial solutions for multiple objective linear problems. An application to target setting in DEA models with preferences,, Omega, 39 (2011), 159. doi: 10.1016/j.omega.2010.06.001. Google Scholar

[23]

F. Hosseinzadeh Lotfi, G. R. Jahanshaloo, A. Ebrahimnejad, M. Soltanifar and S. M. Manosourzadeh, Target setting in the general combined-oriented CCR model using an interactive MOLP method,, Journal of Computational and Applied Mathematics, 234 (2010), 1. doi: 10.1016/j.cam.2009.11.045. Google Scholar

[24]

F. Hosseinzadeh Lotfi, G. R. Jahanshaloo, M. Soltanifar, A. Ebrahimnejad and S. M. Manosourzadeh, Relationship between MOLP and DEA based on output-orientated CCR dual model,, Expert Systems with Applications, 37 (2010), 4331. doi: 10.1016/j.eswa.2009.11.066. Google Scholar

[25]

H. H. Hu, Q. Qi and C. H. Yang, Evaluation of China's regional hospital efficiency: DEA approach with undesirable output,, Journal of the Operational Research Society, 63 (2011), 715. doi: 10.1057/jors.2011.77. Google Scholar

[26]

Z. S. Hua, Y. W. Bian and L. Liang, Eco-efficiency analysis of paper mills along the Huai River: An extended DEA approach,, Omega, 35 (2007), 578. doi: 10.1016/j.omega.2005.11.001. Google Scholar

[27]

X. Huang, D. Hu and Z. Zhou, Measuring efficiency in Chinese commercial banks using a DEA model with undesirable output,, International Journal of Information and Decision Sciences, 5 (2013), 140. doi: 10.1504/IJIDS.2013.053801. Google Scholar

[28]

S. Jain, K. P. Triantis and S. Liu, Manufacturing performance measurement and target setting: A data envelopment analysis approach,, European Journal of Operational Research, 214 (2011), 616. doi: 10.1016/j.ejor.2011.05.028. Google Scholar

[29]

A. Jess, H. Th. Jongen, L. Neralic and O. Stein, A semi-infinite programming model in data envelopment analysis,, European Journal of Operational Research, 49 (2001), 369. doi: 10.1080/02331930108844538. Google Scholar

[30]

P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: an extension of data envelopment analysis,, European Journal of Operational Research, 154 (2004), 437. doi: 10.1016/S0377-2217(03)00180-2. Google Scholar

[31]

P. Korhonen, S. Stenfors and M. Syrjänen, Multiple objective approach as an alternative to radial projection in DEA,, Journal of Productivity Analysis, 20 (2003), 305. Google Scholar

[32]

S. Kumar Mandal and S. Madheswaran, Environmental efficiency of the Indian cement industry: An interstate analysis,, Energy Policy, 38 (2010), 1108. Google Scholar

[33]

H. F. Lewis and T. R. Sexton, Data envelopment analysis with reverse inputs and outputs,, Journal of Productivity Analysis, 21 (2004), 113. doi: 10.1023/B:PROD.0000016868.69586.b4. Google Scholar

[34]

Y. Liu and U. R. Sumaila, Estimating pollution abatement costs of salmon aquaculture: A joint production approach,, Land Economics, 86 (2010), 569. Google Scholar

[35]

C. A. K. Lovell, J. T. Pastor and J. A. Turner, Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries,, European Journal of Operational Research, 87 (1995), 507. Google Scholar

[36]

S. Lozano and E. Gutierrez, Efficiency analysis and target setting of Spanish airports,, Netw. Spat. Econ., 11 (2011), 139. doi: 10.1007/s11067-008-9096-1. Google Scholar

[37]

W. M. Lu and S. F. Lo, A closer look at the economic-environmental disparities for regional development in China,, European Journal of Operational Research, 183 (2007), 882. doi: 10.1016/j.ejor.2006.10.027. Google Scholar

[38]

M. Mahdiloo, A. Noorizadeh and R. Farzipoor Saen, Developing a new data envelopment analysis model for customer value analysis,, Journal of Industrial and Management Optimization, 7 (2011), 531. doi: 10.3934/jimo.2011.7.531. Google Scholar

[39]

N. Malekmohammadi, F. Hosseinzadeh Lotfi and A. B. Jaafar, Target setting in data envelopment analysis using MOLP,, Applied Mathematical Modelling, 35 (2011), 328. doi: 10.1016/j.apm.2010.06.007. Google Scholar

[40]

H. Nakayama and Y. Sawaragi, Satisficing trade-off method for multiobjective programming. An interactive decision analysis,, in Lecture notes in economics and mathematical systems (eds. M. Grauer and A.P. Wierzbicki), 229 (1984), 113. doi: 10.1007/978-3-662-00184-4_13. Google Scholar

[41]

F. Pedraja-Chaparro, J. Salinas-Jimenez and P. Smith, On the role of weight restrictions in data envelopment analysis,, Journal of Productivity Analysis, 8 (1997), 215. Google Scholar

[42]

V. V. Podinovski, Suitability and redundancy of non-homogeneous weight restrictions for measuring the relative efficiency in DEA,, European Journal of Operational Research, 154 (2004), 380. doi: 10.1016/S0377-2217(03)00176-0. Google Scholar

[43]

S. Reinhard, C. A. K. Lovell and G. Thijssen, Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA,, European Journal of Operational Research, 121 (2000), 287. doi: 10.1016/S0377-2217(99)00218-0. Google Scholar

[44]

S. Reinhard and G. Thijssen, Nitrogen efficiency of Dutch dairy farms: A shadow cost system approach,, European Review of Agricultural Economics, 27 (2000), 167. doi: 10.1093/erae/27.2.167. Google Scholar

[45]

R. Riccardi, G. Oggioni and R. Toninelli, Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function,, Energy Policy, 44 (2012), 140. doi: 10.1016/j.enpol.2012.01.030. Google Scholar

[46]

S. Saati, A. Hatami-Marbini, P. J. Agrell and M. Tavana, A common set of weight approach using an ideal decision making unit in data envelopment analysis,, Journal of Industrial and Management Optimization, 8 (2012), 623. doi: 10.3934/jimo.2012.8.623. Google Scholar

[47]

M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation,, European Journal of Operational Research, 142 (2002), 16. doi: 10.1016/S0377-2217(01)00293-4. Google Scholar

[48]

S. Shaik, G. A. Helmers and M. R. Langemeier, Direct and indirect shadow price and cost estimates of nitrogen pollution abatement,, Journal of Agricultural and Resource Economics, 27 (2002), 420. Google Scholar

[49]

T. Sueyoshi and M. Goto, Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry,, European Journal of Operational Research, 216 (2012), 668. doi: 10.1016/j.ejor.2011.07.046. Google Scholar

[50]

E. Thanassoulis, A. Boussofiane and R. G. Dyson, Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis,, European Journal of Operational Research, 80 (1995), 588. doi: 10.1016/0377-2217(94)00139-4. Google Scholar

[51]

R. G. Thompson, P. S. Dharmapala and R. M. Thrall, Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines,, International Journal of Production Economics, 39 (1995), 99. doi: 10.1016/0925-5273(94)00064-H. Google Scholar

[52]

R. G. Thompson, L. N. Langemeier, C. T. Lee and R. M. Thrall, The role of multiplier bounds in efficiency analysis with application to Kansas farming,, Journal of Econometrics, 46 (1990), 93. doi: 10.1016/0304-4076(90)90049-Y. Google Scholar

[53]

R. G. Thompson, F. D. Singleton Jr, R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas,, Interfaces, 16 (1986), 35. doi: 10.1287/inte.16.6.35. Google Scholar

[54]

K. Tone, On returns to scale under weight restrictions in data envelopment analysis,, Journal of Productivity Analysis, 16 (2001), 31. Google Scholar

[55]

A. P. Wierzbick, The use of reference objectives in multiobjective optimization,, in Multiple criteria decision making theory and application. Lecture notes in economics and mathematics systems (eds. G. Fandel and T. Gal), (1980), 468. Google Scholar

[56]

Y. H. B. Wong and J. E. Beasley, Restricting weight flexibility in data envelopment analysis,, Journal of the Operational Research Society, 41 (1990), 829. doi: 10.2307/2583498. Google Scholar

[57]

H. Yang and M. Pollitt, Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants,, European Journal of Operational Research, 197 (2009), 1095. doi: 10.1016/j.ejor.2007.12.052. Google Scholar

[58]

J. B. Yang, B. Y. H. Wong, D. L. Xu and T. J. Stewart, Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods,, European Journal of Operational Research, 195 (2009), 205. doi: 10.1016/j.ejor.2008.01.013. Google Scholar

[59]

J. B. Yang, B. Y. H. Wong, D. L. Xu, X. B. Liu and R. E. Steuer, Integrated bank performance assessment and management planning using hybrid minimax reference point DEA approach,, European Journal of Operational Research, 207 (2010), 1506. doi: 10.1016/j.ejor.2010.07.001. Google Scholar

[60]

J. B. Yang and D. L. Xu, Interactive minimax optimisation for integrated performance analysis and resource planning,, Computers and Operations Research, 46 (2014), 78. doi: 10.1016/j.cor.2014.01.002. Google Scholar

[61]

J. B. Yang, D. L. Xu and S. Yang, Integrated efficiency and trade-off analyses using a DEA-oriented interactive minimax reference point approach,, Computers and Operations Research, 39 (2012), 1062. doi: 10.1016/j.cor.2011.07.001. Google Scholar

[62]

S. You and H. Yan, A new approach in modelling undesirable output in DEA model,, Journal of the Operational Research Society, 62 (2011), 2146. doi: 10.1057/jors.2011.1. Google Scholar

[63]

M. M. Yu, Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors,, Journal of Air Transport Management, 10 (2004), 295. doi: 10.1016/j.jairtraman.2004.04.001. Google Scholar

[64]

S. Zionts and J. Wallenius, An interactive programming method for solving the multiple criteria problem,, Management Science, 22 (1976), 652. doi: 10.1287/mnsc.22.6.652. Google Scholar

[65]

P. Zhou, P. W. Ang and K. L. Poh, Measuring environmental performance under different environmental DEA technologies,, Energy Economics, 30 (2008), 1. doi: 10.1016/j.eneco.2006.05.001. Google Scholar

[1]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[2]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial & Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[3]

Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial & Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014

[4]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial & Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[5]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

[6]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[7]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[8]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[9]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[10]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019041

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[13]

Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343

[14]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[15]

Yibing Lv, Zhongping Wan. Linear bilevel multiobjective optimization problem: Penalty approach. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1213-1223. doi: 10.3934/jimo.2018092

[16]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[17]

Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565

[18]

Jianxin Zhou. Optimization with some uncontrollable variables: a min-equilibrium approach. Journal of Industrial & Management Optimization, 2007, 3 (1) : 129-138. doi: 10.3934/jimo.2007.3.129

[19]

X. X. Huang, Xiaoqi Yang, K. L. Teo. A smoothing scheme for optimization problems with Max-Min constraints. Journal of Industrial & Management Optimization, 2007, 3 (2) : 209-222. doi: 10.3934/jimo.2007.3.209

[20]

Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial & Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

[Back to Top]