October  2014, 10(4): 1209-1224. doi: 10.3934/jimo.2014.10.1209

Hedging strategies for discretely monitored Asian options under Lévy processes

1. 

School of Mathematical Sciences, Nankai University, Tianjin 300071

2. 

School of Business, Nankai University, Tianjin 300071

Received  May 2013 Revised  December 2013 Published  February 2014

In this work, we consider a variance-optimal hedging strategy for discretely sampled geometric Asian options, under exponential Lévy dynamics. Since it is difficult to hedge these instruments perfectly, here we choose to maximize a quadratic utility function and give the expressions of hedging strategies explicitly, based on the derived Föllmer-Schweizer decomposition of the contingent claim of geometric Asian options monitored at discrete times. The expression of its corresponding error is also given.
Citation: Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209
References:
[1]

J. Angus, A note on pricing Asian derivatives with continuous geometric averaging,, Journal of Futures Markets, 19 (1999), 845. doi: 10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.3.CO;2-4. Google Scholar

[2]

E. Bayraktar and H. Xing, Pricing Asian options for jump diffusion,, Mathematical Finance, 21 (2011), 117. doi: 10.1111/j.1467-9965.2010.00426.x. Google Scholar

[3]

N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model,, Operations Research, 60 (2012), 64. doi: 10.1287/opre.1110.1006. Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405. doi: 10.1257/0002828041464597. Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in Applied Stochastic Analysis (eds. M. Davis and R. Elliott), (1991), 389. Google Scholar

[6]

P. Foschi, S. Pagliarani and A. Pascucci, Approximations for Asian options in local volatility models,, Journal of Computational and Applied Mathematics, 237 (2013), 442. doi: 10.1016/j.cam.2012.06.015. Google Scholar

[7]

G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes,, Journal of Banking and Finance, 32 (2008), 2076. doi: 10.1016/j.jbankfin.2007.12.027. Google Scholar

[8]

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs,, Review of Forward Markets, 8 (1989), 222. Google Scholar

[9]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853. doi: 10.1214/105051606000000178. Google Scholar

[10]

F. Hubalek and C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps,, Journal of Computational and Applied Mathematics, 235 (2011), 3355. doi: 10.1016/j.cam.2011.01.049. Google Scholar

[11]

B. Kim and I. S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model,, Quantitative Finance., (). doi: 10.1080/14697688.2011.596844. Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1. doi: 10.1287/moor.20.1.1. Google Scholar

[13]

X. Wang and Y. Wang, Variance-optimal hedging for target volatility options,, Journal of Industrial and Management Optimization, 10 (2014), 207. doi: 10.3934/jimo.2014.10.207. Google Scholar

show all references

References:
[1]

J. Angus, A note on pricing Asian derivatives with continuous geometric averaging,, Journal of Futures Markets, 19 (1999), 845. doi: 10.1002/(SICI)1096-9934(199910)19:7<845::AID-FUT6>3.3.CO;2-4. Google Scholar

[2]

E. Bayraktar and H. Xing, Pricing Asian options for jump diffusion,, Mathematical Finance, 21 (2011), 117. doi: 10.1111/j.1467-9965.2010.00426.x. Google Scholar

[3]

N. Cai and S. G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model,, Operations Research, 60 (2012), 64. doi: 10.1287/opre.1110.1006. Google Scholar

[4]

R. Engle, Risk and Volatility: Econometric models and financial practice,, American Economic Review, 94 (2004), 405. doi: 10.1257/0002828041464597. Google Scholar

[5]

H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information,, in Applied Stochastic Analysis (eds. M. Davis and R. Elliott), (1991), 389. Google Scholar

[6]

P. Foschi, S. Pagliarani and A. Pascucci, Approximations for Asian options in local volatility models,, Journal of Computational and Applied Mathematics, 237 (2013), 442. doi: 10.1016/j.cam.2012.06.015. Google Scholar

[7]

G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes,, Journal of Banking and Finance, 32 (2008), 2076. doi: 10.1016/j.jbankfin.2007.12.027. Google Scholar

[8]

S. Hodges and A. Neuberger, Optimal replication of contingent claims under transactions costs,, Review of Forward Markets, 8 (1989), 222. Google Scholar

[9]

F. Hubalek, J. Kallsen and L. Karwczyk, Variance-optimal hedging for processes with stationary independent increments,, Annals of Applied Probability, 16 (2006), 853. doi: 10.1214/105051606000000178. Google Scholar

[10]

F. Hubalek and C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps,, Journal of Computational and Applied Mathematics, 235 (2011), 3355. doi: 10.1016/j.cam.2011.01.049. Google Scholar

[11]

B. Kim and I. S. Wee, Pricing of geometric Asian options under Heston's stochastic volatility model,, Quantitative Finance., (). doi: 10.1080/14697688.2011.596844. Google Scholar

[12]

D. Schweizer, Variance-optimal hedging in discrete time,, Mathematics of Operations Research, 20 (1995), 1. doi: 10.1287/moor.20.1.1. Google Scholar

[13]

X. Wang and Y. Wang, Variance-optimal hedging for target volatility options,, Journal of Industrial and Management Optimization, 10 (2014), 207. doi: 10.3934/jimo.2014.10.207. Google Scholar

[1]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[2]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[3]

María Teresa V. Martínez-Palacios, Adrián Hernández-Del-Valle, Ambrosio Ortiz-Ramírez. On the pricing of Asian options with geometric average of American type with stochastic interest rate: A stochastic optimal control approach. Journal of Dynamics & Games, 2019, 6 (1) : 53-64. doi: 10.3934/jdg.2019004

[4]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[5]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[6]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[7]

Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001

[8]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[9]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems & Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[10]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[11]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[12]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[13]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[14]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[15]

Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339

[16]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[17]

Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 561-587. doi: 10.3934/dcds.2007.17.561

[18]

Manman Li, George Yin. Optimal threshold strategies with capital injections in a spectrally negative Lévy risk model. Journal of Industrial & Management Optimization, 2019, 15 (2) : 517-535. doi: 10.3934/jimo.2018055

[19]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[20]

Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model. Journal of Industrial & Management Optimization, 2015, 11 (2) : 493-514. doi: 10.3934/jimo.2015.11.493

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]