October  2013, 9(4): 901-917. doi: 10.3934/jimo.2013.9.901

Equilibrium joining probabilities in observable queues with general service and setup times

1. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing

2. 

Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506

Received  October 2012 Revised  March 2013 Published  August 2013

This paper analyzes an M/G/1 queue with general setup times from an economical point of view. In such a queue whenever the system becomes empty, the server is turned off. A new customer's arrival will turn the server on after a setup period. Upon arrival, the customers decide whether to join or balk the queue based on observation of the queue length and the status of the server, along with the reward-cost structure of the system. For the observable and almost observable cases, the equilibrium joining strategies of customers who wish to maximize their expected net benefit are obtained. Two numerical examples are presented to illustrate the equilibrium joining probabilities for these cases under some specific distribution functions of service times and setup times.
Citation: Feng Zhang, Jinting Wang, Bin Liu. Equilibrium joining probabilities in observable queues with general service and setup times. Journal of Industrial & Management Optimization, 2013, 9 (4) : 901-917. doi: 10.3934/jimo.2013.9.901
References:
[1]

E. Altman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue,, in, (2002), 56. Google Scholar

[2]

J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, Analysis of a multiserver queue with setup times,, Queueing Systems, 51 (2005), 53. doi: 10.1007/s11134-005-1740-6. Google Scholar

[3]

W. Bischof, Analysis of M/G/1-queues with setup times and vacations under six different service disciplines,, Queueing Systems, 39 (2001), 265. doi: 10.1023/A:1013992708103. Google Scholar

[4]

A. Borthakur and G. Choudhury, A multiserver Poisson queue with a general startup time under $N$-policy,, Calcutta Statistical Association Bulletin, 49 (1999), 199. Google Scholar

[5]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes,, European Journal of Operational Research, 218 (2012), 708. doi: 10.1016/j.ejor.2011.11.043. Google Scholar

[6]

A. Burnetas, Customer equilibrium and optimal strategies in Markovian queues in series,, Annals of Operations Research, 208 (2013), 515. doi: 10.1007/s10479-011-1010-4. Google Scholar

[7]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213. doi: 10.1007/s11134-007-9036-7. Google Scholar

[8]

G. Choudhury, On a batch arrival Poisson queue with a random setup and vacation period,, Computers $&$ Operations Research, 25 (1998), 1013. doi: 10.1016/S0305-0548(98)00038-0. Google Scholar

[9]

G. Choudhury, An $M^X$/G/1 queueing system with a setup period and a vacation period,, Queueing Systems, 36 (2000), 23. doi: 10.1023/A:1011089403694. Google Scholar

[10]

A. Economou and S. Kanta, On balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237. doi: 10.1007/s11134-008-9083-8. Google Scholar

[11]

A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696. doi: 10.1016/j.orl.2008.06.006. Google Scholar

[12]

A. Economou and S. Kanta, Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue,, Naval Research Logistics, 58 (2011), 107. doi: 10.1002/nav.20444. Google Scholar

[13]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967. doi: 10.1016/j.peva.2011.07.001. Google Scholar

[14]

A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment,, Annals of Operations Research, 208 (2013), 489. doi: 10.1007/s10479-011-1025-x. Google Scholar

[15]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81. doi: 10.2307/1913415. Google Scholar

[16]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986. doi: 10.1287/opre.1100.0907. Google Scholar

[17]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278. doi: 10.1016/j.ejor.2012.05.026. Google Scholar

[18]

R. Hassin and M. Haviv, Equilibrium threshold strategies: the case of queues with priorities,, Operations Research, 45 (1997), 966. doi: 10.1287/opre.45.6.966. Google Scholar

[19]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems,", International Series in Operations Research & Management Science, 59 (2003). doi: 10.1007/978-1-4615-0359-0. Google Scholar

[20]

M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239. doi: 10.1007/s11134-007-9020-2. Google Scholar

[21]

Q. M. He and E. Jewkes, Flow time in the $M AP$/G/1 queue with customer batching and setup times,, Stochastic Models, 11 (1995), 691. doi: 10.1080/15326349508807367. Google Scholar

[22]

Y. Kerner, The conditional distribution of the residual service time in the $M_n$/G/1 queue,, Stochastic Models, 24 (2008), 364. doi: 10.1080/15326340802232210. Google Scholar

[23]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Game and Economic Behavior, 71 (2011), 521. doi: 10.1016/j.geb.2010.06.002. Google Scholar

[24]

W. Liu, Y. Ma and J. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy,, Applied Mathematical Modelling, 36 (2012), 6186. doi: 10.1016/j.apm.2012.02.003. Google Scholar

[25]

P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15. doi: 10.2307/1909200. Google Scholar

[26]

S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009). doi: 10.1201/9781420010008. Google Scholar

[27]

W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times,, Central European Journal of Operational Research, 18 (2010), 241. doi: 10.1007/s10100-009-0104-4. Google Scholar

[28]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part I,", North-Holland, (1991). Google Scholar

[29]

N. Tian and Z.G. Zhang, "Vacation Queueing Models. Theory and Applications,", International Series in Operations Research & Management Science, 93 (2006). Google Scholar

[30]

J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716. doi: 10.1016/j.amc.2011.08.012. Google Scholar

[31]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861. doi: 10.3934/jimo.2012.8.861. Google Scholar

show all references

References:
[1]

E. Altman and R. Hassin, Non-threshold equilibrium for customers joining an M/G/1 queue,, in, (2002), 56. Google Scholar

[2]

J. R. Artalejo, A. Economou and M. J. Lopez-Herrero, Analysis of a multiserver queue with setup times,, Queueing Systems, 51 (2005), 53. doi: 10.1007/s11134-005-1740-6. Google Scholar

[3]

W. Bischof, Analysis of M/G/1-queues with setup times and vacations under six different service disciplines,, Queueing Systems, 39 (2001), 265. doi: 10.1023/A:1013992708103. Google Scholar

[4]

A. Borthakur and G. Choudhury, A multiserver Poisson queue with a general startup time under $N$-policy,, Calcutta Statistical Association Bulletin, 49 (1999), 199. Google Scholar

[5]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes,, European Journal of Operational Research, 218 (2012), 708. doi: 10.1016/j.ejor.2011.11.043. Google Scholar

[6]

A. Burnetas, Customer equilibrium and optimal strategies in Markovian queues in series,, Annals of Operations Research, 208 (2013), 515. doi: 10.1007/s10479-011-1010-4. Google Scholar

[7]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times,, Queueing Systems, 56 (2007), 213. doi: 10.1007/s11134-007-9036-7. Google Scholar

[8]

G. Choudhury, On a batch arrival Poisson queue with a random setup and vacation period,, Computers $&$ Operations Research, 25 (1998), 1013. doi: 10.1016/S0305-0548(98)00038-0. Google Scholar

[9]

G. Choudhury, An $M^X$/G/1 queueing system with a setup period and a vacation period,, Queueing Systems, 36 (2000), 23. doi: 10.1023/A:1011089403694. Google Scholar

[10]

A. Economou and S. Kanta, On balking strategies and pricing for the single server Markovian queue with compartmented waiting space,, Queueing Systems, 59 (2008), 237. doi: 10.1007/s11134-008-9083-8. Google Scholar

[11]

A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696. doi: 10.1016/j.orl.2008.06.006. Google Scholar

[12]

A. Economou and S. Kanta, Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue,, Naval Research Logistics, 58 (2011), 107. doi: 10.1002/nav.20444. Google Scholar

[13]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967. doi: 10.1016/j.peva.2011.07.001. Google Scholar

[14]

A. Economou and A. Manou, Equilibrium balking strategies for a clearing queueing system in alternating environment,, Annals of Operations Research, 208 (2013), 489. doi: 10.1007/s10479-011-1025-x. Google Scholar

[15]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81. doi: 10.2307/1913415. Google Scholar

[16]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986. doi: 10.1287/opre.1100.0907. Google Scholar

[17]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues: The case of heterogeneous customers,, European Journal of Operational Research, 222 (2012), 278. doi: 10.1016/j.ejor.2012.05.026. Google Scholar

[18]

R. Hassin and M. Haviv, Equilibrium threshold strategies: the case of queues with priorities,, Operations Research, 45 (1997), 966. doi: 10.1287/opre.45.6.966. Google Scholar

[19]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems,", International Series in Operations Research & Management Science, 59 (2003). doi: 10.1007/978-1-4615-0359-0. Google Scholar

[20]

M. Haviv and Y. Kerner, On balking from an empty queue,, Queueing Systems, 55 (2007), 239. doi: 10.1007/s11134-007-9020-2. Google Scholar

[21]

Q. M. He and E. Jewkes, Flow time in the $M AP$/G/1 queue with customer batching and setup times,, Stochastic Models, 11 (1995), 691. doi: 10.1080/15326349508807367. Google Scholar

[22]

Y. Kerner, The conditional distribution of the residual service time in the $M_n$/G/1 queue,, Stochastic Models, 24 (2008), 364. doi: 10.1080/15326340802232210. Google Scholar

[23]

Y. Kerner, Equilibrium joining probabilities for an M/G/1 queue,, Game and Economic Behavior, 71 (2011), 521. doi: 10.1016/j.geb.2010.06.002. Google Scholar

[24]

W. Liu, Y. Ma and J. Li, Equilibrium threshold strategies in observable queueing systems under single vacation policy,, Applied Mathematical Modelling, 36 (2012), 6186. doi: 10.1016/j.apm.2012.02.003. Google Scholar

[25]

P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15. doi: 10.2307/1909200. Google Scholar

[26]

S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009). doi: 10.1201/9781420010008. Google Scholar

[27]

W. Sun, P. Guo and N. Tian, Equilibrium threshold strategies in observable queueing systems with setup/closedown times,, Central European Journal of Operational Research, 18 (2010), 241. doi: 10.1007/s10100-009-0104-4. Google Scholar

[28]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation. Vol. 1. Vacation and Priority Systems. Part I,", North-Holland, (1991). Google Scholar

[29]

N. Tian and Z.G. Zhang, "Vacation Queueing Models. Theory and Applications,", International Series in Operations Research & Management Science, 93 (2006). Google Scholar

[30]

J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716. doi: 10.1016/j.amc.2011.08.012. Google Scholar

[31]

F. Zhang, J. Wang and B. Liu, On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations,, Journal of Industrial and Management Optimization, 8 (2012), 861. doi: 10.3934/jimo.2012.8.861. Google Scholar

[1]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[2]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[3]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[4]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[5]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[6]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[7]

Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653

[8]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[9]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial & Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030

[10]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[11]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[12]

Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial & Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593

[13]

Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial & Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909

[14]

Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609

[15]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial & Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[16]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-28. doi: 10.3934/jimo.2019096

[17]

A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2019083

[18]

Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691

[19]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[20]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]