# American Institute of Mathematical Sciences

October  2012, 8(4): 781-806. doi: 10.3934/jimo.2012.8.781

## Markovian retrial queues with two way communication

 1 Department of Statistics and O.R., Faculty of Mathematics, Complutense University of Madrid, Madrid 28040, Spain 2 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Tokyo 152-8552, Japan

Received  September 2011 Revised  July 2012 Published  September 2012

In this paper, we first consider single server retrial queues with two way communication. Ingoing calls arrive at the server according to a Poisson process. Service times of these calls follow an exponential distribution. If the server is idle, it starts making an outgoing call in an exponentially distributed time. The duration of outgoing calls follows another exponential distribution. An ingoing arriving call that finds the server being busy joins an orbit and retries to enter the server after some exponentially distributed time. For this model, we present an extensive study in which we derive explicit expressions for the joint stationary distribution of the number of ingoing calls in the orbit and the state of the server, the partial factorial moments as well as their generating functions. Furthermore, we obtain asymptotic formulae for the joint stationary distribution and the factorial moments. We then extend the study to multiserver retrial queues with two way communication for which a necessary and sufficient condition for the stability, an explicit formula for average number of ingoing calls in the servers and a level-dependent quasi-birth-and-death process are derived.
Citation: Jesus R. Artalejo, Tuan Phung-Duc. Markovian retrial queues with two way communication. Journal of Industrial & Management Optimization, 2012, 8 (4) : 781-806. doi: 10.3934/jimo.2012.8.781
##### References:
 [1] Z. Aksin, M. Armony and V. Mehrotra, The modern call center: A multi-disciplinary perspective on operations management research,, Production and Operations Management, 16 (2007), 665. doi: 10.1111/j.1937-5956.2007.tb00288.x. Google Scholar [2] J. R. Artalejo and A. Gomez-Corral, Steady state solution of a single-server queue with linear repeated request,, Journal of Applied Probability, 34 (1997), 223. doi: 10.2307/3215189. Google Scholar [3] J. R. Artalejo and A. Gomez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008). doi: 10.1007/978-3-540-78725-9. Google Scholar [4] J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009,, Mathematical and Computer Modelling, 51 (2010), 1071. doi: 10.1016/j.mcm.2009.12.011. Google Scholar [5] J. R. Artalejo and J. A. C. Resing, Mean value analysis of single server retrial queues,, Asia-Pacific Journal of Operational Research, 27 (2010), 335. doi: 10.1142/S0217595910002739. Google Scholar [6] K. Avrachenkov, A. Dudin and V. Klimenok, Retrial queueing model MMAP/$M_{2}$/1 with two orbits,, Lecture Notes on Computer Science, 6235 (2010), 107. doi: 10.1007/978-3-642-15428-7_12. Google Scholar [7] S. Bhulai and G. Koole, A queueing model for call blending in call centers,, IEEE transactions on Automatic Control, 48 (2003), 1434. doi: 10.1109/TAC.2003.815038. Google Scholar [8] B. D. Choi, K. B. Choi and Y. W. Lee, M/G/1 Retrial queueing systems with two types of calls and finite capacity,, Queueing Systems, 19 (1995), 215. doi: 10.1007/BF01148947. Google Scholar [9] B. D. Choi, Y. C. Kim and Y. W. Lee, The M/M/$c$ retrial queue with geometric loss and feedback,, Computers & Mathematics with Applications, 36 (1998), 41. doi: 10.1016/S0898-1221(98)00160-6. Google Scholar [10] A. Deslauriers, P. LfEcuyer, J. Pichitlamken, A. Ingolfsson and A. N. Avramidis, Markov chain models of a telephone call center with call blending,, Computers & Operations Research, 34 (2007), 1616. doi: 10.1016/j.cor.2005.06.019. Google Scholar [11] G. I. Falin, Model of coupled switching in presence of recurrent calls,, Engineering Cybernetics Review, 17 (1979), 53. Google Scholar [12] G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman and Hall, (1997). Google Scholar [13] P. Flajolet and R. Sedgewick, "Analytic Combinatorics,", Cambridge University Press, (2009). Google Scholar [14] T. Hanschke, Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts,, Journal of Applied Probability, 24 (1987), 486. Google Scholar [15] J. Kim, B. Kim and S. S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue,, Journal of Applied Probability, 44 (2007), 1111. Google Scholar [16] J. Kim, Retrial queueing system with collision and impatience,, Communications of the Korean Mathematical Society, 25 (2010), 647. doi: 10.4134/CKMS.2010.25.4.647. Google Scholar [17] B. Kim, Stability of a retrial queueing network with different classes of customers and restricted resource pooling,, Journal of Industrial and Management Optimization, 7 (2011), 753. Google Scholar [18] G. Koole and A. Mandelbaum, Queueing models of call centers: An introduction,, Annals of Operations Research, 113 (2002), 41. doi: 10.1023/A:1020949626017. Google Scholar [19] A. Krishnamoorthy, T. G. Deepak and V. C. Joshua, An M/G/1 retrial queue with nonpersistent customers and orbital search,, Stochastic Analysis and Applications, 23 (2005), 975. doi: 10.1080/07362990500186753. Google Scholar [20] J. D. C. Little, A proof for the queuing formula: $L = \lambda W$,, Operations Research, 9 (1961), 383. doi: 10.1287/opre.9.3.383. Google Scholar [21] M. Martin and J. R. Artalejo, Analysis of an M/G/1 queue with two types of impatient units,, Advances in Applied Probability, 27 (1995), 840. doi: 10.2307/1428136. Google Scholar [22] M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model,, Queueing Systems, 7 (1990), 169. doi: 10.1007/BF01158473. Google Scholar [23] T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, M/M/3/3 and M/M/4/4 retrial queues,, Journal of Industrial and Management Optimization, 5 (2009), 431. doi: 10.3934/jimo.2009.5.431. Google Scholar [24] T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, State-dependent M/M/c/c + r retrial queues with Bernoulli abandonment,, Journal of Industrial and Management Optimization, 6 (2010), 517. doi: 10.3934/jimo.2010.6.517. Google Scholar [25] T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A simple algorithm for the rate matrices of level-dependent QBD processes,, Proceedings of the 5th International Conference on Queueing Theory and Network Applications, (2010), 46. Google Scholar [26] D. A. Samuelson, Predictive dialing for outbound telephone call centers,, Interfaces, 29 (1999), 66. doi: 10.1287/inte.29.5.66. Google Scholar [27] R. Stolletz, "Performance Analysis and Optimization of Inbound Call Centers,", Lecture Notes in Economics and Mathematical Systems, (2003). Google Scholar [28] J. Wang, L. Zhao and F. Zhang, Analysis of the finite source retrial queues with server breakdowns and repairs,, Journal of Industrial and Management Optimization, 7 (2011), 655. doi: 10.3934/jimo.2011.7.655. Google Scholar

show all references

##### References:
 [1] Z. Aksin, M. Armony and V. Mehrotra, The modern call center: A multi-disciplinary perspective on operations management research,, Production and Operations Management, 16 (2007), 665. doi: 10.1111/j.1937-5956.2007.tb00288.x. Google Scholar [2] J. R. Artalejo and A. Gomez-Corral, Steady state solution of a single-server queue with linear repeated request,, Journal of Applied Probability, 34 (1997), 223. doi: 10.2307/3215189. Google Scholar [3] J. R. Artalejo and A. Gomez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008). doi: 10.1007/978-3-540-78725-9. Google Scholar [4] J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000-2009,, Mathematical and Computer Modelling, 51 (2010), 1071. doi: 10.1016/j.mcm.2009.12.011. Google Scholar [5] J. R. Artalejo and J. A. C. Resing, Mean value analysis of single server retrial queues,, Asia-Pacific Journal of Operational Research, 27 (2010), 335. doi: 10.1142/S0217595910002739. Google Scholar [6] K. Avrachenkov, A. Dudin and V. Klimenok, Retrial queueing model MMAP/$M_{2}$/1 with two orbits,, Lecture Notes on Computer Science, 6235 (2010), 107. doi: 10.1007/978-3-642-15428-7_12. Google Scholar [7] S. Bhulai and G. Koole, A queueing model for call blending in call centers,, IEEE transactions on Automatic Control, 48 (2003), 1434. doi: 10.1109/TAC.2003.815038. Google Scholar [8] B. D. Choi, K. B. Choi and Y. W. Lee, M/G/1 Retrial queueing systems with two types of calls and finite capacity,, Queueing Systems, 19 (1995), 215. doi: 10.1007/BF01148947. Google Scholar [9] B. D. Choi, Y. C. Kim and Y. W. Lee, The M/M/$c$ retrial queue with geometric loss and feedback,, Computers & Mathematics with Applications, 36 (1998), 41. doi: 10.1016/S0898-1221(98)00160-6. Google Scholar [10] A. Deslauriers, P. LfEcuyer, J. Pichitlamken, A. Ingolfsson and A. N. Avramidis, Markov chain models of a telephone call center with call blending,, Computers & Operations Research, 34 (2007), 1616. doi: 10.1016/j.cor.2005.06.019. Google Scholar [11] G. I. Falin, Model of coupled switching in presence of recurrent calls,, Engineering Cybernetics Review, 17 (1979), 53. Google Scholar [12] G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman and Hall, (1997). Google Scholar [13] P. Flajolet and R. Sedgewick, "Analytic Combinatorics,", Cambridge University Press, (2009). Google Scholar [14] T. Hanschke, Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts,, Journal of Applied Probability, 24 (1987), 486. Google Scholar [15] J. Kim, B. Kim and S. S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue,, Journal of Applied Probability, 44 (2007), 1111. Google Scholar [16] J. Kim, Retrial queueing system with collision and impatience,, Communications of the Korean Mathematical Society, 25 (2010), 647. doi: 10.4134/CKMS.2010.25.4.647. Google Scholar [17] B. Kim, Stability of a retrial queueing network with different classes of customers and restricted resource pooling,, Journal of Industrial and Management Optimization, 7 (2011), 753. Google Scholar [18] G. Koole and A. Mandelbaum, Queueing models of call centers: An introduction,, Annals of Operations Research, 113 (2002), 41. doi: 10.1023/A:1020949626017. Google Scholar [19] A. Krishnamoorthy, T. G. Deepak and V. C. Joshua, An M/G/1 retrial queue with nonpersistent customers and orbital search,, Stochastic Analysis and Applications, 23 (2005), 975. doi: 10.1080/07362990500186753. Google Scholar [20] J. D. C. Little, A proof for the queuing formula: $L = \lambda W$,, Operations Research, 9 (1961), 383. doi: 10.1287/opre.9.3.383. Google Scholar [21] M. Martin and J. R. Artalejo, Analysis of an M/G/1 queue with two types of impatient units,, Advances in Applied Probability, 27 (1995), 840. doi: 10.2307/1428136. Google Scholar [22] M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model,, Queueing Systems, 7 (1990), 169. doi: 10.1007/BF01158473. Google Scholar [23] T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, M/M/3/3 and M/M/4/4 retrial queues,, Journal of Industrial and Management Optimization, 5 (2009), 431. doi: 10.3934/jimo.2009.5.431. Google Scholar [24] T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, State-dependent M/M/c/c + r retrial queues with Bernoulli abandonment,, Journal of Industrial and Management Optimization, 6 (2010), 517. doi: 10.3934/jimo.2010.6.517. Google Scholar [25] T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A simple algorithm for the rate matrices of level-dependent QBD processes,, Proceedings of the 5th International Conference on Queueing Theory and Network Applications, (2010), 46. Google Scholar [26] D. A. Samuelson, Predictive dialing for outbound telephone call centers,, Interfaces, 29 (1999), 66. doi: 10.1287/inte.29.5.66. Google Scholar [27] R. Stolletz, "Performance Analysis and Optimization of Inbound Call Centers,", Lecture Notes in Economics and Mathematical Systems, (2003). Google Scholar [28] J. Wang, L. Zhao and F. Zhang, Analysis of the finite source retrial queues with server breakdowns and repairs,, Journal of Industrial and Management Optimization, 7 (2011), 655. doi: 10.3934/jimo.2011.7.655. Google Scholar
 [1] Tuan Phung-Duc, Ken’ichi Kawanishi. Multiserver retrial queues with after-call work. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 639-656. doi: 10.3934/naco.2011.1.639 [2] Tuan Phung-Duc, Wouter Rogiest, Sabine Wittevrongel. Single server retrial queues with speed scaling: Analysis and performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1927-1943. doi: 10.3934/jimo.2017025 [3] Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial & Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655 [4] G. Wei, P. Clifford. Analysis and numerical approximation of a class of two-way diffusions. Communications on Pure & Applied Analysis, 2003, 2 (1) : 91-99. doi: 10.3934/cpaa.2003.2.91 [5] Tuan Phung-Duc. Single server retrial queues with setup time. Journal of Industrial & Management Optimization, 2017, (3) : 1329-1345. doi: 10.3934/jimo.2016075 [6] Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial & Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030 [7] Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. M/M/3/3 and M/M/4/4 retrial queues. Journal of Industrial & Management Optimization, 2009, 5 (3) : 431-451. doi: 10.3934/jimo.2009.5.431 [8] Dae San Kim. Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups. Advances in Mathematics of Communications, 2009, 3 (2) : 167-178. doi: 10.3934/amc.2009.3.167 [9] Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-30. doi: 10.3934/jimo.2019082 [10] Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. State-dependent M/M/c/c + r retrial queues with Bernoulli abandonment. Journal of Industrial & Management Optimization, 2010, 6 (3) : 517-540. doi: 10.3934/jimo.2010.6.517 [11] Shuichi Kawashima, Shinya Nishibata, Masataka Nishikawa. Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane. Conference Publications, 2003, 2003 (Special) : 469-476. doi: 10.3934/proc.2003.2003.469 [12] Cristian A. Coclici, Jörg Heiermann, Gh. Moroşanu, W. L. Wendland. Asymptotic analysis of a two--dimensional coupled problem for compressible viscous flows. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 137-163. doi: 10.3934/dcds.2004.10.137 [13] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch. Two-way multi-lane traffic model for pedestrians in corridors. Networks & Heterogeneous Media, 2011, 6 (3) : 351-381. doi: 10.3934/nhm.2011.6.351 [14] Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 [15] B. Coll, Chengzhi Li, Rafel Prohens. Quadratic perturbations of a class of quadratic reversible systems with two centers. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 699-729. doi: 10.3934/dcds.2009.24.699 [16] Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593 [17] Tetsuji Hirayama. Analysis of multiclass feedback queues and its application to a packet scheduling problem. Journal of Industrial & Management Optimization, 2010, 6 (3) : 541-568. doi: 10.3934/jimo.2010.6.541 [18] Dhanya Shajin, A. N. Dudin, Olga Dudina, A. Krishnamoorthy. A two-priority single server retrial queue with additional items. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019085 [19] Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121 [20] Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

2018 Impact Factor: 1.025

## Metrics

• PDF downloads (17)
• HTML views (0)
• Cited by (17)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]