• Previous Article
    A Stackelberg game management model of the urban public transport
  • JIMO Home
  • This Issue
  • Next Article
    On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem
April  2012, 8(2): 493-505. doi: 10.3934/jimo.2012.8.493

Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive

1. 

School of Mathematical Sciences and Computing Technology, Central South University, Hunan Changsha, 410083, China

2. 

School of Mathematics Sciences and Computing Technology, Central South University, Hunan Changsha, 410083

Received  February 2011 Revised  December 2011 Published  April 2012

In this paper, a polymorphic uncertain nonlinear programming (PUNP) model is constructed to formulate the problem of maximizing the V-belt's fatigue life according to the practical engineering design conditions. The model is converted into an equivalent interval programming only involved with interval parameters for any given degree of membership and confidence level. Then, a deterministic equivalent formulation (DEF) for the original model is obtained based on the concept of possibility degree for the order of two interval numbers. An algorithm, called sampling based algorithm, is developed to find a robust optimal design scheme for maximizing the fatigue life of the V-belt. Case study is employed to demonstrate the validity and the practicability of the constructed model and the algorithm.
Citation: Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial & Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493
References:
[1]

C. Carlsson and R. Fullér, "Fuzzy Reasoning in Decision Making and Optimization,", Physica-Verlag, (2002). Google Scholar

[2]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems,, Mathematical Programming, 117 (2009), 51. doi: 10.1007/s10107-007-0163-z. Google Scholar

[3]

G. Facchinetti, R. G. Ricci and S. Muzzioli, Note on ranking fuzzy triangular numbers,, International Journal of Intelligent Systems, 13 (1998), 613. Google Scholar

[4]

B. Q. Hu and S. Wang, A novel approach in uncertain programming. I: New arithmetic and order relation for interval numbers,, Journal of Industrial and Management Optimization, 2 (2006), 351. doi: 10.3934/jimo.2006.2.351. Google Scholar

[5]

C. Jiang, "Theories and Algorithms of Uncertain Optimization Based on Interval,'', Ph.D thesis, (2008). Google Scholar

[6]

C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems,, European Journal of Operational Research, 188 (2008), 1. doi: 10.1016/j.ejor.2007.03.031. Google Scholar

[7]

A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems,, Applied Mathematical Modelling, 35 (2011), 817. doi: 10.1016/j.apm.2010.07.037. Google Scholar

[8]

J. Li, J. P. Xu and M. S. Gen, A class of multiobjective linear programming model with fuzzy random coefficients,, Mathematical and Computer Modelling, 44 (2006), 1097. doi: 10.1016/j.mcm.2006.03.013. Google Scholar

[9]

T. F. Liang and H. W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method,, Journal of Industrial and Management Optimization, 7 (2011), 365. doi: 10.3934/jimo.2011.7.365. Google Scholar

[10]

Q. G. Lin, G. H. Huang, B. Bass and X. S. Qin, IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty,, Energy Policy, 37 (2009), 868. doi: 10.1016/j.enpol.2008.10.038. Google Scholar

[11]

Y. D. Liu, Calculation of V-belt life,, Journal of Hubei Automotive Industries Institute, 21 (1997), 1. Google Scholar

[12]

S. M. Luo, Y. D. Yu and Y. F. Guo, et al., "Theory on Belt Transmission and New Types of Belt Transmission,", National Defence Industry Press, (2006). Google Scholar

[13]

X. S. Qin, G. H. Huang, G. M. Zeng, A. Chakma, and Y. F. Huang, An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty,, European Journal of Operational Research, 180 (2007), 1331. doi: 10.1016/j.ejor.2006.03.053. Google Scholar

[14]

Z. Ren and S. Glode, Computational service life estimation of contacting mechanical elements in regard to pitting,, Computers & Structures, 80 (2002), 2209. doi: 10.1016/S0045-7949(02)00263-8. Google Scholar

[15]

M. F. Spotts, "Design of Machine Elements," 6th edition,, Englewood Prentice-Hall Inc., (1985). Google Scholar

[16]

Z. Wan, A. Y. Hao, F. Z. Meng and C. M. Hu, Hybrid method for a class of stochastic bi-criteria optimization problems,, Journal of Inequalities and Applications, 2010 (2010). doi: 10.1155/2010/745162. Google Scholar

[17]

Z. Wan, F. Z. Meng, A. Y. Hao and Y. L. Wang, Fuzzy and stochastic parameters-based prediction method for the components of alkali in the sintering process of aluminium,, Fuzzy System and Mathematics, 25 (2011), 163. Google Scholar

[18]

Z. Wan, K. L. Teo, L. S. Kong and C. Yang, A class of mix design problems: Formulation, solution methods and applications,, ANZIAM Journal, 50 (2009), 455. doi: 10.1017/S1446181109000145. Google Scholar

[19]

M. Z. Wang, M. Montaz Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks,, Journal of Industrial and Management Optimization, 7 (2011), 317. doi: 10.3934/jimo.2011.7.317. Google Scholar

[20]

Z. S. Xu and Q. L. Da, Possibility degree method for ranking interval numbers and its application,, Journal of Systems Engineering, 18 (2003), 67. Google Scholar

[21]

H. B. Yan, S. C Yuan and W. X. Ji, Design optimization of V-belt applying genetic algorithm and MATLAB toolbox,, Machinery, 35 (2008), 23. Google Scholar

[22]

C. S. Yang, Design optimization of belt transmission by intelligent algorithm,, in, (2009), 1. Google Scholar

[23]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design method for maximizing the capacity of V-belt drive,, SCINCE CHINA: Technological Sciences, 54 (2011), 140. doi: 10.1007/s11431-010-4193-z. Google Scholar

[24]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design of V-belt fatigue life,, China Mechanical Engineering, 22 (2011), 403. Google Scholar

show all references

References:
[1]

C. Carlsson and R. Fullér, "Fuzzy Reasoning in Decision Making and Optimization,", Physica-Verlag, (2002). Google Scholar

[2]

X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems,, Mathematical Programming, 117 (2009), 51. doi: 10.1007/s10107-007-0163-z. Google Scholar

[3]

G. Facchinetti, R. G. Ricci and S. Muzzioli, Note on ranking fuzzy triangular numbers,, International Journal of Intelligent Systems, 13 (1998), 613. Google Scholar

[4]

B. Q. Hu and S. Wang, A novel approach in uncertain programming. I: New arithmetic and order relation for interval numbers,, Journal of Industrial and Management Optimization, 2 (2006), 351. doi: 10.3934/jimo.2006.2.351. Google Scholar

[5]

C. Jiang, "Theories and Algorithms of Uncertain Optimization Based on Interval,'', Ph.D thesis, (2008). Google Scholar

[6]

C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems,, European Journal of Operational Research, 188 (2008), 1. doi: 10.1016/j.ejor.2007.03.031. Google Scholar

[7]

A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems,, Applied Mathematical Modelling, 35 (2011), 817. doi: 10.1016/j.apm.2010.07.037. Google Scholar

[8]

J. Li, J. P. Xu and M. S. Gen, A class of multiobjective linear programming model with fuzzy random coefficients,, Mathematical and Computer Modelling, 44 (2006), 1097. doi: 10.1016/j.mcm.2006.03.013. Google Scholar

[9]

T. F. Liang and H. W. Cheng, Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method,, Journal of Industrial and Management Optimization, 7 (2011), 365. doi: 10.3934/jimo.2011.7.365. Google Scholar

[10]

Q. G. Lin, G. H. Huang, B. Bass and X. S. Qin, IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty,, Energy Policy, 37 (2009), 868. doi: 10.1016/j.enpol.2008.10.038. Google Scholar

[11]

Y. D. Liu, Calculation of V-belt life,, Journal of Hubei Automotive Industries Institute, 21 (1997), 1. Google Scholar

[12]

S. M. Luo, Y. D. Yu and Y. F. Guo, et al., "Theory on Belt Transmission and New Types of Belt Transmission,", National Defence Industry Press, (2006). Google Scholar

[13]

X. S. Qin, G. H. Huang, G. M. Zeng, A. Chakma, and Y. F. Huang, An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty,, European Journal of Operational Research, 180 (2007), 1331. doi: 10.1016/j.ejor.2006.03.053. Google Scholar

[14]

Z. Ren and S. Glode, Computational service life estimation of contacting mechanical elements in regard to pitting,, Computers & Structures, 80 (2002), 2209. doi: 10.1016/S0045-7949(02)00263-8. Google Scholar

[15]

M. F. Spotts, "Design of Machine Elements," 6th edition,, Englewood Prentice-Hall Inc., (1985). Google Scholar

[16]

Z. Wan, A. Y. Hao, F. Z. Meng and C. M. Hu, Hybrid method for a class of stochastic bi-criteria optimization problems,, Journal of Inequalities and Applications, 2010 (2010). doi: 10.1155/2010/745162. Google Scholar

[17]

Z. Wan, F. Z. Meng, A. Y. Hao and Y. L. Wang, Fuzzy and stochastic parameters-based prediction method for the components of alkali in the sintering process of aluminium,, Fuzzy System and Mathematics, 25 (2011), 163. Google Scholar

[18]

Z. Wan, K. L. Teo, L. S. Kong and C. Yang, A class of mix design problems: Formulation, solution methods and applications,, ANZIAM Journal, 50 (2009), 455. doi: 10.1017/S1446181109000145. Google Scholar

[19]

M. Z. Wang, M. Montaz Ali and G. H. Lin, Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks,, Journal of Industrial and Management Optimization, 7 (2011), 317. doi: 10.3934/jimo.2011.7.317. Google Scholar

[20]

Z. S. Xu and Q. L. Da, Possibility degree method for ranking interval numbers and its application,, Journal of Systems Engineering, 18 (2003), 67. Google Scholar

[21]

H. B. Yan, S. C Yuan and W. X. Ji, Design optimization of V-belt applying genetic algorithm and MATLAB toolbox,, Machinery, 35 (2008), 23. Google Scholar

[22]

C. S. Yang, Design optimization of belt transmission by intelligent algorithm,, in, (2009), 1. Google Scholar

[23]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design method for maximizing the capacity of V-belt drive,, SCINCE CHINA: Technological Sciences, 54 (2011), 140. doi: 10.1007/s11431-010-4193-z. Google Scholar

[24]

S. J. Zhang, Z. Wan and G. L. Liu, Global optimization design of V-belt fatigue life,, China Mechanical Engineering, 22 (2011), 403. Google Scholar

[1]

H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044

[2]

Xiaohu Qian, Min Huang, Wai-Ki Ching, Loo Hay Lee, Xingwei Wang. Mechanism design in project procurement auctions with cost uncertainty and failure risk. Journal of Industrial & Management Optimization, 2019, 15 (1) : 131-157. doi: 10.3934/jimo.2018036

[3]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[4]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[5]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[6]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019068

[7]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[8]

Jesús Fabián López Pérez, Tahir Ekin, Jesus A. Jimenez, Francis A. Méndez Mediavilla. Risk-balanced territory design optimization for a Micro finance institution. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018176

[9]

Yingjing Shi, Rui Li, Honglei Xu. Control augmentation design of UAVs based on deviation modification of aerodynamic focus. Journal of Industrial & Management Optimization, 2015, 11 (1) : 231-240. doi: 10.3934/jimo.2015.11.231

[10]

Robert Ebihart Msigwa, Yue Lu, Xiantao Xiao, Liwei Zhang. A perturbation-based approach for continuous network design problem with emissions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 135-149. doi: 10.3934/naco.2015.5.135

[11]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[12]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[13]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[14]

Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial & Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777

[15]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[16]

Lars Grüne, Manuela Sigurani. Numerical event-based ISS controller design via a dynamic game approach. Journal of Computational Dynamics, 2015, 2 (1) : 65-81. doi: 10.3934/jcd.2015.2.65

[17]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[18]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019120

[19]

Hong Il Cho, Gang Uk Hwang. Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization. Journal of Industrial & Management Optimization, 2011, 7 (3) : 607-622. doi: 10.3934/jimo.2011.7.607

[20]

H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]