January  2012, 8(1): 179-187. doi: 10.3934/jimo.2012.8.179

Topological essentiality in infinite games

1. 

School of Mathematics and Computer Science, Guizhou Normal University, Guizhou, Guiyang 550001, China

2. 

Department of Mathematics, Guizhou Uniersity, Guizhou, Guiyang 550025, China

3. 

Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China

Received  February 2011 Revised  September 2011 Published  November 2011

By constructing a corresponding Nash map, we prove that every infinite game with compact metrizable sets of strategies and continuous payoffs has such a topological essential component that contains a minimal payoff-wise essential set containing a stable set, and deduce that every topological essential equilibrium is payoff-wise essential and so is perfect.
Citation: Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial & Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179
References:
[1]

N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies,, Math. Soc. Sci., 29 (1995), 151. doi: 10.1016/0165-4896(94)00765-Z. Google Scholar

[2]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968). Google Scholar

[3]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. Natl. Acad. Sci. USA, 38 (1952), 121. doi: 10.1073/pnas.38.2.121. Google Scholar

[4]

D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games,, J. Economic Theory, 31 (1983), 251. Google Scholar

[5]

D. Fudenberg and D. Levine, Limit games and limit equilibria,, J. Economic Theory, 38 (1986), 261. doi: 10.1016/0022-0531(86)90118-3. Google Scholar

[6]

I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170. Google Scholar

[7]

S. Govindan and R. Wilson, Essential equilibria,, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706. doi: 10.1073/pnas.0506796102. Google Scholar

[8]

J. Hillas, On the definition of the strategic stability of equilibria,, Econometrica, 58 (1990), 1365. doi: 10.2307/2938320. Google Scholar

[9]

J. Jiang, Essential equilibrium points of n-person non-cooperative games. II,, Sci. Sinica, 12 (1963), 651. Google Scholar

[10]

J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games,, Sci. Sinica, 12 (1963), 951. Google Scholar

[11]

E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1984). Google Scholar

[12]

E. Kohlberg and J. Mertens, On the strategic stability of equilibria,, Econometrica, 54 (1986), 1003. doi: 10.2307/1912320. Google Scholar

[13]

A. McLennan, Consistent conditional beliefs in noncooperative game theory,, Int. J. of Game Theory, 18 (1989), 175. doi: 10.1007/BF01268156. Google Scholar

[14]

J. F. Nash, Jr., Equilibrium points in $n$-person games,, Proc. Natl. Acad. Sci. USA, 36 (1950), 48. doi: 10.1073/pnas.36.1.48. Google Scholar

[15]

J. Nash, Non-cooperative games,, Ann. Math. (2), 54 (1951), 286. doi: 10.2307/1969529. Google Scholar

[16]

B. O'Neill, Essential sets and fixed points,, Am. J. Math., 75 (1953), 497. Google Scholar

[17]

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games,, Int. J. of Game Theory, 4 (1975), 25. doi: 10.1007/BF01766400. Google Scholar

[18]

L. Simon, Local perfection,, J. Economic Theory, 43 (1987), 134. doi: 10.1016/0022-0531(87)90118-9. Google Scholar

[19]

L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games,, Econometrica, 63 (1995), 1421. doi: 10.2307/2171776. Google Scholar

[20]

A. Tychonoff, Ein fixpunktsatz,, Math. Ann., 111 (1935), 767. Google Scholar

[21]

E. van Damme, "Stability and Perfection of Nash Equilibria,", Second edition, (1991). Google Scholar

[22]

W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games,, Sci. Sinica, 11 (1962), 1307. Google Scholar

[23]

Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games,, Appl. Math. Lett., 24 (2011), 253. doi: 10.1016/j.aml.2010.09.014. Google Scholar

[24]

Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies,, Int. J. of Game Theory, 35 (2007), 493. doi: 10.1007/s00182-006-0063-0. Google Scholar

[25]

Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory,, Appl. Math. Lett., 21 (2008), 489. doi: 10.1016/j.aml.2007.05.015. Google Scholar

show all references

References:
[1]

N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies,, Math. Soc. Sci., 29 (1995), 151. doi: 10.1016/0165-4896(94)00765-Z. Google Scholar

[2]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968). Google Scholar

[3]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. Natl. Acad. Sci. USA, 38 (1952), 121. doi: 10.1073/pnas.38.2.121. Google Scholar

[4]

D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games,, J. Economic Theory, 31 (1983), 251. Google Scholar

[5]

D. Fudenberg and D. Levine, Limit games and limit equilibria,, J. Economic Theory, 38 (1986), 261. doi: 10.1016/0022-0531(86)90118-3. Google Scholar

[6]

I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170. Google Scholar

[7]

S. Govindan and R. Wilson, Essential equilibria,, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706. doi: 10.1073/pnas.0506796102. Google Scholar

[8]

J. Hillas, On the definition of the strategic stability of equilibria,, Econometrica, 58 (1990), 1365. doi: 10.2307/2938320. Google Scholar

[9]

J. Jiang, Essential equilibrium points of n-person non-cooperative games. II,, Sci. Sinica, 12 (1963), 651. Google Scholar

[10]

J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games,, Sci. Sinica, 12 (1963), 951. Google Scholar

[11]

E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1984). Google Scholar

[12]

E. Kohlberg and J. Mertens, On the strategic stability of equilibria,, Econometrica, 54 (1986), 1003. doi: 10.2307/1912320. Google Scholar

[13]

A. McLennan, Consistent conditional beliefs in noncooperative game theory,, Int. J. of Game Theory, 18 (1989), 175. doi: 10.1007/BF01268156. Google Scholar

[14]

J. F. Nash, Jr., Equilibrium points in $n$-person games,, Proc. Natl. Acad. Sci. USA, 36 (1950), 48. doi: 10.1073/pnas.36.1.48. Google Scholar

[15]

J. Nash, Non-cooperative games,, Ann. Math. (2), 54 (1951), 286. doi: 10.2307/1969529. Google Scholar

[16]

B. O'Neill, Essential sets and fixed points,, Am. J. Math., 75 (1953), 497. Google Scholar

[17]

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games,, Int. J. of Game Theory, 4 (1975), 25. doi: 10.1007/BF01766400. Google Scholar

[18]

L. Simon, Local perfection,, J. Economic Theory, 43 (1987), 134. doi: 10.1016/0022-0531(87)90118-9. Google Scholar

[19]

L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games,, Econometrica, 63 (1995), 1421. doi: 10.2307/2171776. Google Scholar

[20]

A. Tychonoff, Ein fixpunktsatz,, Math. Ann., 111 (1935), 767. Google Scholar

[21]

E. van Damme, "Stability and Perfection of Nash Equilibria,", Second edition, (1991). Google Scholar

[22]

W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games,, Sci. Sinica, 11 (1962), 1307. Google Scholar

[23]

Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games,, Appl. Math. Lett., 24 (2011), 253. doi: 10.1016/j.aml.2010.09.014. Google Scholar

[24]

Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies,, Int. J. of Game Theory, 35 (2007), 493. doi: 10.1007/s00182-006-0063-0. Google Scholar

[25]

Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory,, Appl. Math. Lett., 21 (2008), 489. doi: 10.1016/j.aml.2007.05.015. Google Scholar

[1]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[2]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[3]

Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771

[4]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[5]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[6]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-29. doi: 10.3934/jimo.2019040

[7]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[8]

Georg Ostrovski, Sebastian van Strien. Payoff performance of fictitious play. Journal of Dynamics & Games, 2014, 1 (4) : 621-638. doi: 10.3934/jdg.2014.1.621

[9]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[10]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[11]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[12]

Lasse Kliemann, Elmira Shirazi Sheykhdarabadi, Anand Srivastav. Price of anarchy for graph coloring games with concave payoff. Journal of Dynamics & Games, 2017, 4 (1) : 41-58. doi: 10.3934/jdg.2017003

[13]

Janos Kollar. The Nash conjecture for threefolds. Electronic Research Announcements, 1998, 4: 63-73.

[14]

William Geller, Bruce Kitchens, Michał Misiurewicz. Microdynamics for Nash maps. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1007-1024. doi: 10.3934/dcds.2010.27.1007

[15]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[16]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130.

[17]

Simon Hoof. Cooperative dynamic advertising via state-dependent payoff weights. Journal of Dynamics & Games, 2019, 6 (3) : 195-209. doi: 10.3934/jdg.2019014

[18]

Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics & Games, 2014, 1 (4) : 599-619. doi: 10.3934/jdg.2014.1.599

[19]

Aili Wang, Yanni Xiao, Robert A. Cheke. Global dynamics of a piece-wise epidemic model with switching vaccination strategy. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2915-2940. doi: 10.3934/dcdsb.2014.19.2915

[20]

Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]