• Previous Article
    Performance analysis of a Geom/Geom/1 queueing system with variable input probability
  • JIMO Home
  • This Issue
  • Next Article
    Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization
July  2011, 7(3): 623-639. doi: 10.3934/jimo.2011.7.623

Performance of an efficient sleep mode operation for IEEE 802.16m

1. 

Department of Mathematics and Telecommunication Mathematics Research Center, Korea University, Seoul 136-701, South Korea

Received  September 2010 Revised  May 2011 Published  June 2011

Power saving is one of the important issues for battery-powered mobile station in mobile WiMAX. Both IEEE 802.16e and IEEE 802.16m standards define sleep mode operations for power saving of mobile stations. In this paper, we propose an efficient sleep mode operation for the IEEE 802.16m advanced mobile WiMAX. The proposed scheme takes advantages of sleep modes in both the IEEE 802.16e and IEEE 802.16m. This scheme has binary exponential sleep windows which guarantee the minimum length for effective power saving. The mobile station uses the T_AMS timer in the IEEE 802.16m so that the mobile station sends or receives data packets during the extendable listening window in the sleep mode. We mathematically analyze the proposed scheme by an embedded Markov chain to obtain the average message delay and the average power consumption of a mobile station. The analytical results match with the simulation results very well. The analytical results show that the power consumption of our scheme is better than those of the legacy sleep modes in the IEEE 802.16e and the IEEE 802.16m under the same delay bound.
Citation: Sangkyu Baek, Bong Dae Choi. Performance of an efficient sleep mode operation for IEEE 802.16m. Journal of Industrial & Management Optimization, 2011, 7 (3) : 623-639. doi: 10.3934/jimo.2011.7.623
References:
[1]

S. Baek, J. J. Son and B. D. Choi, Performance analysis of sleep mode operation for IEEE 802.16m advanced WMAN,, Proc. Communications Workshops, (2009). Google Scholar

[2]

K. Han and S. Choi, Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems,, Proc. IEEE VTC 2006 Spring, 3 (2006), 1141. Google Scholar

[3]

E. Hwang, Y. H. Lee, K. J. Kim, J. J. Son and B. D. Choi, Performance analysis of power saving mechanism employing both sleep mode and idle mode in IEEE 802.16e,, IEICE Transactions on Communications, E92B (2009), 2809. Google Scholar

[4]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with binary exponential traffic indications in the IEEE 802.16e/m,, Queueing Systems: Theory and Applications, 62 (2009), 197. Google Scholar

[5]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with periodic traffic indications in the IEEE 802.16e/m,, IEEE Transactions on Vehicular Technology, 59 (2010), 319. doi: 10.1109/TVT.2009.2032193. Google Scholar

[6]

, "IEEE 802.16m Evaluation Methodology Document (EMD)," IEEE 802.16m-08/004r5,, 2009., 2009 (). Google Scholar

[7]

, "IEEE P802.16m/D3,", 2009., 2009 (). Google Scholar

[8]

, "IEEE Std. 802.16-2004: Part 16: IEEE Standard for Local and Metropolitan Area Networks: Air Interface for Fixed Broadband Wireless Access Systems,", 2004., 2004 (). Google Scholar

[9]

, "IEEE Std. 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, and IEEE Std. 802.16-2004/Cor1-2005," Corrigendum 1,, 2005., 2005 (). Google Scholar

[10]

S. Jin and W. Yue, Performance analysis and evaluation for power saving class III in IEEE 802.16e network,, Journal of Industrial and Management Optimization, 6 (2010), 691. doi: 10.3934/jimo.2010.6.691. Google Scholar

[11]

, "Keep-Awake Mechanism for 802.16m Sleep Mode," C802.16m-08/718,, 2008., 2008 (). Google Scholar

[12]

L. Kong and D. H. K. Tsang, Performance study of power saving classes of type I and II in IEEE 802.16e,, Proc. IEEE Conference on Local Computer Networks, (2006), 20. doi: 10.1109/LCN.2006.322094. Google Scholar

[13]

, Sequans Communications,, Datasheet: SQN1130 System-on-Chip for WiMAX Mobile Stations, (). Google Scholar

[14]

, "Sleep Mode for IEEE 802.16m System," C802.16m-08/688r1,, 2008., 2008 (). Google Scholar

[15]

, "Sleep Mode Operation for IEEE802.16m," C802.16m-08/721r1,, 2008., 2008 (). Google Scholar

[16]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation," Vol. 1, Vacation and Priority Systems, Part 1,, North-Holland Publishing Co., (1991). Google Scholar

[17]

Y. Xiao, Energy saving mechanism in the IEEE 802.16e wireless MAN,, IEEE Communications Letters, 9 (2005), 595. doi: 10.1109/LCOMM.2005.1461675. Google Scholar

[18]

Y. Zhang and M. Fujise, Energy management in the IEEE 802.16e MAC,, IEEE Communications Letters, 10 (2006), 311. doi: 10.1109/LCOMM.2006.1613757. Google Scholar

show all references

References:
[1]

S. Baek, J. J. Son and B. D. Choi, Performance analysis of sleep mode operation for IEEE 802.16m advanced WMAN,, Proc. Communications Workshops, (2009). Google Scholar

[2]

K. Han and S. Choi, Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems,, Proc. IEEE VTC 2006 Spring, 3 (2006), 1141. Google Scholar

[3]

E. Hwang, Y. H. Lee, K. J. Kim, J. J. Son and B. D. Choi, Performance analysis of power saving mechanism employing both sleep mode and idle mode in IEEE 802.16e,, IEICE Transactions on Communications, E92B (2009), 2809. Google Scholar

[4]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with binary exponential traffic indications in the IEEE 802.16e/m,, Queueing Systems: Theory and Applications, 62 (2009), 197. Google Scholar

[5]

E. Hwang, K. J. Kim, J. J. Son and B. D. Choi, The power saving mechanism with periodic traffic indications in the IEEE 802.16e/m,, IEEE Transactions on Vehicular Technology, 59 (2010), 319. doi: 10.1109/TVT.2009.2032193. Google Scholar

[6]

, "IEEE 802.16m Evaluation Methodology Document (EMD)," IEEE 802.16m-08/004r5,, 2009., 2009 (). Google Scholar

[7]

, "IEEE P802.16m/D3,", 2009., 2009 (). Google Scholar

[8]

, "IEEE Std. 802.16-2004: Part 16: IEEE Standard for Local and Metropolitan Area Networks: Air Interface for Fixed Broadband Wireless Access Systems,", 2004., 2004 (). Google Scholar

[9]

, "IEEE Std. 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, and IEEE Std. 802.16-2004/Cor1-2005," Corrigendum 1,, 2005., 2005 (). Google Scholar

[10]

S. Jin and W. Yue, Performance analysis and evaluation for power saving class III in IEEE 802.16e network,, Journal of Industrial and Management Optimization, 6 (2010), 691. doi: 10.3934/jimo.2010.6.691. Google Scholar

[11]

, "Keep-Awake Mechanism for 802.16m Sleep Mode," C802.16m-08/718,, 2008., 2008 (). Google Scholar

[12]

L. Kong and D. H. K. Tsang, Performance study of power saving classes of type I and II in IEEE 802.16e,, Proc. IEEE Conference on Local Computer Networks, (2006), 20. doi: 10.1109/LCN.2006.322094. Google Scholar

[13]

, Sequans Communications,, Datasheet: SQN1130 System-on-Chip for WiMAX Mobile Stations, (). Google Scholar

[14]

, "Sleep Mode for IEEE 802.16m System," C802.16m-08/688r1,, 2008., 2008 (). Google Scholar

[15]

, "Sleep Mode Operation for IEEE802.16m," C802.16m-08/721r1,, 2008., 2008 (). Google Scholar

[16]

H. Takagi, "Queueing Analysis: A Foundation of Performance Evaluation," Vol. 1, Vacation and Priority Systems, Part 1,, North-Holland Publishing Co., (1991). Google Scholar

[17]

Y. Xiao, Energy saving mechanism in the IEEE 802.16e wireless MAN,, IEEE Communications Letters, 9 (2005), 595. doi: 10.1109/LCOMM.2005.1461675. Google Scholar

[18]

Y. Zhang and M. Fujise, Energy management in the IEEE 802.16e MAC,, IEEE Communications Letters, 10 (2006), 311. doi: 10.1109/LCOMM.2006.1613757. Google Scholar

[1]

Zsolt Saffer, Miklós Telek. Analysis of BMAP vacation queue and its application to IEEE 802.16e sleep mode. Journal of Industrial & Management Optimization, 2010, 6 (3) : 661-690. doi: 10.3934/jimo.2010.6.661

[2]

Zhanqiang Huo, Wuyi Yue, Naishuo Tian, Shunfu Jin. Performance evaluation for the sleep mode in the IEEE 802.16e based on a queueing model with close-down time and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 511-524. doi: 10.3934/jimo.2009.5.511

[3]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[4]

Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003

[5]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[6]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[7]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[8]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[9]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[10]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[11]

Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1077-1105. doi: 10.3934/dcdsb.2015.20.1077

[12]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

[13]

Gianne Derks, Sara Maad, Björn Sandstede. Perturbations of embedded eigenvalues for the bilaplacian on a cylinder. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 801-821. doi: 10.3934/dcds.2008.21.801

[14]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems & Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[15]

S. Aiello, Luigi Barletti, Aldo Belleni-Morante. Identification of photon sources, stochastically embedded in an interstellar cloud. Kinetic & Related Models, 2009, 2 (3) : 425-432. doi: 10.3934/krm.2009.2.425

[16]

Ephraim Agyingi, Tamas Wiandt, Sophia A. Maggelakis. Thermal detection of a prevascular tumor embedded in breast tissue. Mathematical Biosciences & Engineering, 2015, 12 (5) : 907-915. doi: 10.3934/mbe.2015.12.907

[17]

Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. M/M/3/3 and M/M/4/4 retrial queues. Journal of Industrial & Management Optimization, 2009, 5 (3) : 431-451. doi: 10.3934/jimo.2009.5.431

[18]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[19]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[20]

Ethan Akin. On chain continuity. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 111-120. doi: 10.3934/dcds.1996.2.111

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]