• Previous Article
    Optimality conditions for vector equilibrium problems with constraints
  • JIMO Home
  • This Issue
  • Next Article
    The modified cutting angle method for global minimization of increasing positively homogeneous functions over the unit simplex
October  2009, 5(4): 791-824. doi: 10.3934/jimo.2009.5.791

Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty

1. 

Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, MS 17-N406, Laurel, MD 20723-6099, United States

2. 

University of Virginia, 112 Olsson Hall, P.O. Box 400736, Charlottesville, VA 22904-4736, United States

Received  February 2007 Revised  June 2009 Published  August 2009

Many sequential decision problems are characterized by multiple objectives and can be formulated as multiobjective dynamic programs. A subset of these problems concerns systems that are only partially observable such that the system response to implemented policies is known to belong to a set of possible system responses but is not uniquely known prior to policy selection. A new methodology is developed to identify optimal strategies in finite-horizon multiobjective decision problems for systems of this type. These strategies will either be minimax efficient with respect to a partial ordering in the multiobjective space or, where minimax efficient strategies do not exist, minimax optimal with respect to a total ordering in a scalar space induced by decisionmaker preferences over the set of objectives. In formulating the dynamic program, system uncertainty is described by a finite set of scenario-specified system models, and the likelihood of any particular scenario is assumed to be unknown. By accounting for different scenarios, the multiobjective dynamic program and the resulting strategies are robust with respect to uncertainty in the underlying policy-response relationships. The solution concept is developed with assurances that the principle of optimality holds. An illustrative example demonstrates the methodology.
Citation: Matthew H. Henry, Yacov Y. Haimes. Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty. Journal of Industrial & Management Optimization, 2009, 5 (4) : 791-824. doi: 10.3934/jimo.2009.5.791
[1]

Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089

[2]

Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial & Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365

[3]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[4]

Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361

[5]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[6]

Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67

[7]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[8]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[9]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[10]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[11]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[12]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[13]

Ziye Shi, Qingwei Jin. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 871-882. doi: 10.3934/jimo.2014.10.871

[14]

Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial & Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081

[15]

Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131

[16]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[17]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[18]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[19]

Miniak-Górecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263-275. doi: 10.3934/mbe.2017017

[20]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]