January  2008, 4(1): 17-32. doi: 10.3934/jimo.2008.4.17

Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls

1. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025

Received  June 2006 Revised  August 2007 Published  January 2008

This paper is concerned with the second order nonlinear impulsive evolution differential equations perturbed by unbounded operator on Banach space. Discussing the perturbation of time-varying operator matrix and constructing the corresponding evolution system generated by operator matrix we introduce the reasonable mild solution of second order nonlinear impulsive evolution differential equations and prove the existence of mild solutions. Existence of optimal controls for a Lagrange problem of systems governed by the second order nonlinear impulsive evolution equations is also presented. An example is given for demonstration.
Citation: Y. Peng, X. Xiang. Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls. Journal of Industrial & Management Optimization, 2008, 4 (1) : 17-32. doi: 10.3934/jimo.2008.4.17
[1]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[2]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027

[3]

Kim Dang Phung, Gengsheng Wang, Xu Zhang. On the existence of time optimal controls for linear evolution equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 925-941. doi: 10.3934/dcdsb.2007.8.925

[4]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197

[5]

Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27

[6]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[7]

Monica Motta, Caterina Sartori. Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4527-4552. doi: 10.3934/dcds.2015.35.4527

[8]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[9]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[10]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[11]

Peizhao Yu, Guoshan Zhang. Eigenstructure assignment for polynomial matrix systems ensuring normalization and impulse elimination. Mathematical Foundations of Computing, 2019, 2 (3) : 251-266. doi: 10.3934/mfc.2019016

[12]

Josef Diblík, Radoslav Chupáč, Miroslava Růžičková. Existence of unbounded solutions of a linear homogenous system of differential equations with two delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2447-2459. doi: 10.3934/dcdsb.2014.19.2447

[13]

Brahim El Asri. The value of a minimax problem involving impulse control. Journal of Dynamics & Games, 2019, 6 (1) : 1-17. doi: 10.3934/jdg.2019001

[14]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[15]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[16]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[17]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[18]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[19]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[20]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]