October  2007, 3(4): 749-761. doi: 10.3934/jimo.2007.3.749

Robust solutions of split feasibility problem with uncertain linear operator

1. 

Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, P.R., China, China

2. 

Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, P.R.

Received  November 2006 Revised  January 2007 Published  October 2007

In this paper, we treat the split feasibility problem with uncertain linear operator (USFP). For this problem, we first reformulate it as an uncertain optimization problem (UOP) with zero optimal value, and then we introduce robust counterparts of the UOP and reformulate them as the tractable convex optimization problems. These convex optimization problems have close connection with the robust counterparts of USFP and the minimum SFPs under the appropriate conditions. In the end of this paper, we give some numerical results to illustrate the effectiveness of the robust solutions of the concerned problem.
Citation: Ai-Ling Yan, Gao-Yang Wang, Naihua Xiu. Robust solutions of split feasibility problem with uncertain linear operator. Journal of Industrial & Management Optimization, 2007, 3 (4) : 749-761. doi: 10.3934/jimo.2007.3.749
[1]

Yazheng Dang, Jie Sun, Honglei Xu. Inertial accelerated algorithms for solving a split feasibility problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1383-1394. doi: 10.3934/jimo.2016078

[2]

Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019017

[3]

Ya-zheng Dang, Jie Sun, Su Zhang. Double projection algorithms for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2023-2034. doi: 10.3934/jimo.2018135

[4]

Suthep Suantai, Nattawut Pholasa, Prasit Cholamjiak. The modified inertial relaxed CQ algorithm for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1595-1615. doi: 10.3934/jimo.2018023

[5]

Aviv Gibali, Dang Thi Mai, Nguyen The Vinh. A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. Journal of Industrial & Management Optimization, 2019, 15 (2) : 963-984. doi: 10.3934/jimo.2018080

[6]

Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4227-4246. doi: 10.3934/dcds.2016.36.4227

[7]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[8]

David Ginzburg. Constructing automorphic representations in split classical groups. Electronic Research Announcements, 2012, 19: 18-32. doi: 10.3934/era.2012.19.18

[9]

Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081

[10]

Dang Van Hieu. Projection methods for solving split equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019056

[11]

Monica Motta. Minimum time problem with impulsive and ordinary controls. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5781-5809. doi: 10.3934/dcds.2018252

[12]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[13]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[14]

Paolo D'Arco, María Isabel González Vasco, Angel L. Pérez del Pozo, Claudio Soriente, Rainer Steinwandt. Private set intersection: New generic constructions and feasibility results. Advances in Mathematics of Communications, 2017, 11 (3) : 481-502. doi: 10.3934/amc.2017040

[15]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-8. doi: 10.3934/jimo.2019065

[16]

Yan Tang. Convergence analysis of a new iterative algorithm for solving split variational inclusion problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2018187

[17]

Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347

[18]

I-Lin Wang, Shiou-Jie Lin. A network simplex algorithm for solving the minimum distribution cost problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 929-950. doi: 10.3934/jimo.2009.5.929

[19]

Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613

[20]

Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial & Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]