June  2019, 11(2): 239-254. doi: 10.3934/jgm.2019013

Dispersive Lamb systems

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

* Corresponding author: Peter J. Olver

Received  October 2017 Revised  March 2018 Published  May 2019

Under periodic boundary conditions, a one-dimensional dispersive medium driven by a Lamb oscillator exhibits a smooth response when the dispersion relation is asymptotically linear or superlinear at large wave numbers, but unusual fractal solution profiles emerge when the dispersion relation is asymptotically sublinear. Strikingly, this is exactly the opposite of the superlinear asymptotic regime required for fractalization and dispersive quantization, also known as the Talbot effect, of the unforced medium induced by discontinuous initial conditions.

Citation: Peter J. Olver, Natalie E. Sheils. Dispersive Lamb systems. Journal of Geometric Mechanics, 2019, 11 (2) : 239-254. doi: 10.3934/jgm.2019013
References:
[1]

M. V. BerryI. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.

[2]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21pp. doi: 10.1098/rspa.2012.0407.

[3]

V. ChousionisM. B. Erdoğan and N. Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. London Math. Soc., 110 (2015), 543-564. doi: 10.1112/plms/pdu061.

[4]

B. Deconinck, Q. Guo, E. Shlizerman and V. Vasan, Fokas's uniform transform method for linear systems, Quart. Appl. Math., 76 (2018), 463-488, arXiv 1705.00358. doi: 10.1090/qam/1484.

[5]

B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady state heat conduction in composite walls, Proc. Roy. Soc. London A, 470 (2014), 20130605.

[6]

J. J. Duistermaat, Self-similarity of ``Riemann's nondifferentiable function'', Nieuw Arch. Wisk., 9 (1991), 303-337.

[7]

M. B. Erdoğan, personal communication, 2018.

[8]

M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math., 25 (2019), 11. doi: 10.1007/s00029-019-0455-1.

[9]

M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081-1090. doi: 10.4310/MRL.2013.v20.n6.a7.

[10] M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316563267.
[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 1411-1443. doi: 10.1098/rspa.1997.0077.

[12]

A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Conference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008. doi: 10.1137/1.9780898717068.

[13]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, Siam J. Appl. Math., 64 (2003), 484-524. doi: 10.1137/S0036139902418717.

[14]

I. A. Kunin, Elastic Media with Microstructure I, , Springer-Verlag, New York, 1982.

[15]

G. L. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211. doi: 10.1112/plms/s1-32.1.208.

[16]

P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610. doi: 10.4169/000298910x496723.

[17]

P. J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-02099-0.

[18]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992,353-402. doi: 10.1007/978-1-4612-2966-7_16.

[19]

A. C. Scott, Soliton oscillations in DNA, Phys. Rev. A, 31 (1985), 3518-3519. doi: 10.1103/PhysRevA.31.3518.

[20]

N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, Appl. Math. Lett., 37 (2014), 107-111. doi: 10.1016/j.aml.2014.06.006.

[21]

H. F. Talbot, Facts related to optical science. No. Ⅳ, Philos. Mag., 9 (1836), 401-407.

[22]

H. F. Weinberger, A First Course in Partial Differential Equations, Dover Publ., New York, 1995.

[23]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

show all references

References:
[1]

M. V. BerryI. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.

[2]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21pp. doi: 10.1098/rspa.2012.0407.

[3]

V. ChousionisM. B. Erdoğan and N. Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. London Math. Soc., 110 (2015), 543-564. doi: 10.1112/plms/pdu061.

[4]

B. Deconinck, Q. Guo, E. Shlizerman and V. Vasan, Fokas's uniform transform method for linear systems, Quart. Appl. Math., 76 (2018), 463-488, arXiv 1705.00358. doi: 10.1090/qam/1484.

[5]

B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady state heat conduction in composite walls, Proc. Roy. Soc. London A, 470 (2014), 20130605.

[6]

J. J. Duistermaat, Self-similarity of ``Riemann's nondifferentiable function'', Nieuw Arch. Wisk., 9 (1991), 303-337.

[7]

M. B. Erdoğan, personal communication, 2018.

[8]

M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math., 25 (2019), 11. doi: 10.1007/s00029-019-0455-1.

[9]

M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081-1090. doi: 10.4310/MRL.2013.v20.n6.a7.

[10] M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316563267.
[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 1411-1443. doi: 10.1098/rspa.1997.0077.

[12]

A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Conference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008. doi: 10.1137/1.9780898717068.

[13]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, Siam J. Appl. Math., 64 (2003), 484-524. doi: 10.1137/S0036139902418717.

[14]

I. A. Kunin, Elastic Media with Microstructure I, , Springer-Verlag, New York, 1982.

[15]

G. L. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211. doi: 10.1112/plms/s1-32.1.208.

[16]

P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610. doi: 10.4169/000298910x496723.

[17]

P. J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-02099-0.

[18]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992,353-402. doi: 10.1007/978-1-4612-2966-7_16.

[19]

A. C. Scott, Soliton oscillations in DNA, Phys. Rev. A, 31 (1985), 3518-3519. doi: 10.1103/PhysRevA.31.3518.

[20]

N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, Appl. Math. Lett., 37 (2014), 107-111. doi: 10.1016/j.aml.2014.06.006.

[21]

H. F. Talbot, Facts related to optical science. No. Ⅳ, Philos. Mag., 9 (1836), 401-407.

[22]

H. F. Weinberger, A First Course in Partial Differential Equations, Dover Publ., New York, 1995.

[23]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

Figure 1.  The Lamb Oscillator on the Line.
Figure 2.  The Lamb Oscillator on the Line at Large Time.
Figure 3.  The Periodic Lamb Oscillator.
Figure 4.  The Dispersive Periodic Lamb Oscillator with $ \omega (k) = k^2 $.
Figure 5.  The Dispersive Periodic Lamb Oscillator for the Klein-Gordon Model.
Figure 6.  The Dispersive Periodic Lamb Oscillator with $ \omega(k) = \sqrt{\left| k \right|} $.
Figure 7.  The Dispersive Periodic Lamb Oscillator for the Regularized Boussinesq Model.
Figure 8.  The Unidirectional Periodic Lamb Oscillator for the Transport Model.
Figure 9.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k) = {k^2} $.
Figure 10.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k) = \sqrt{k} $.
Figure 11.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k)=k^{2} /\left(1+\frac{1}{3} k^{2}\right) $
[1]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[2]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[3]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[4]

Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167

[5]

Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537

[6]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[7]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[8]

F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783

[9]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[10]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261

[12]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[13]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[14]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[15]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[16]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[17]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

[18]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[19]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[20]

C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]