December  2017, 9(4): 439-457. doi: 10.3934/jgm.2017017

Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems

1. 

Faculty of Science, University of Ontario Institute of Technology, Oshawa, ONT L1H 7K4, Canada

2. 

Department of Mathematics and Statistics, Queen's University, Kingston, ONT K7L 3N6, Canada

* Corresponding author: Pietro-Luciano Buono

Received  June 2010 Revised  April 2017 Published  October 2017

We consider the question of linear stability of a periodic solution $z(t)$ with finite spatio-temporal symmetry group of a reversible-equivariant Hamiltonian system obtained as a minimizer of the action functional. Our main theorem states that $z(t)$ is unstable if a subspace $W$ associated with the boundary conditions of the minimizing problem is a Lagrangian subspace with no focal points on the time interval defined by the boundary conditions and the second variation restricted to the subspace $W$ at the minimizer has positive directions. We show that the conditions of our theorem are always met for a class of minimizing periodic orbits with the standard mechanical reversing symmetry. Comparison theorems for Lagrangian subspaces and the use of time-reversing symmetries are essential tools in constructing stable and unstable subspaces for $z(t)$. In particular, our results are complementary to the recent paper of Hu and Sun Commun. Math. Phys. 290, (2009).

Citation: Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017
References:
[1]

V. I. Arnol'd, The Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen., 19 (1985), 1-10, 95.

[2]

S. V. Bolotin and D. V. Treschev, Hill's formula, Russian Math. Surveys, 65 (2010), 191-257. doi: 10.1070/RM2010v065n02ABEH004671.

[3]

R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206. doi: 10.1002/cpa.3160090204.

[4]

S. CappellR. Lee and E. Y. Miller, On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186. doi: 10.1002/cpa.3160470202.

[5]

K.-C. Chen, Action minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318. doi: 10.1007/s002050100146.

[6]

K.-C. Chen, Binary decompositions for the planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276. doi: 10.1007/s00205-003-0277-2.

[7]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. doi: 10.2307/2661357.

[8]

A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du Probléme newtonien de 4 corps de masses égales dans $\mathbb{R}^{3}$ : orbites hip-hop, Celestial Mechanics and Dynamical Astronomy, 77 (2000), 139-152. doi: 10.1023/A:1008381001328.

[9]

G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems, 19 (1999), 901-952. doi: 10.1017/S014338579913387X.

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. Math., 21 (1976), 173-195. doi: 10.1016/0001-8708(76)90074-8.

[11]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Inv. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[12]

M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. Ⅱ, Applied Mathematical Sciences, 69, Springer-Verlag, New-York, 1988. doi: 10.1007/978-1-4612-4574-2.

[13]

P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.

[14]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777. doi: 10.1007/s00220-009-0860-y.

[15]

M. LewisD. OffinP.-L. Buono and M. Kovacic, Instability of the periodic Hip-Hop orbit in the 2N-body problem with equal masses, Discrete and Continuous Dynamical Systems -A, 33 (2013), 1137-1155.

[16]

J. E. Marsden, Lectures on Mechanics, LMS Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511624001.

[17]

M. Morse, The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, 18 American Mathematical Society, Providence, 1996.

[18]

D. Offin, A spectral theorem for reversible second order equations with periodic coefficients, Differential and Integral Equations, 5 (1992), 615-629.

[19]

D. Offin, Hyperbolic minimizing geodesics, Trans. AMS, 352 (2000), 3323-3338. doi: 10.1090/S0002-9947-00-02483-1.

[20]

D. Offin and H. Cabral, Hyperbolic symmetric periodic orbits in the isosceles three-body problem, Disc. Cont. Dyn. Syst. Ser. S, 2 (2009), 379-392. doi: 10.3934/dcdss.2009.2.379.

[21]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963. doi: 10.1017/S0143385707000284.

show all references

References:
[1]

V. I. Arnol'd, The Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen., 19 (1985), 1-10, 95.

[2]

S. V. Bolotin and D. V. Treschev, Hill's formula, Russian Math. Surveys, 65 (2010), 191-257. doi: 10.1070/RM2010v065n02ABEH004671.

[3]

R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206. doi: 10.1002/cpa.3160090204.

[4]

S. CappellR. Lee and E. Y. Miller, On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186. doi: 10.1002/cpa.3160470202.

[5]

K.-C. Chen, Action minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318. doi: 10.1007/s002050100146.

[6]

K.-C. Chen, Binary decompositions for the planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276. doi: 10.1007/s00205-003-0277-2.

[7]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901. doi: 10.2307/2661357.

[8]

A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du Probléme newtonien de 4 corps de masses égales dans $\mathbb{R}^{3}$ : orbites hip-hop, Celestial Mechanics and Dynamical Astronomy, 77 (2000), 139-152. doi: 10.1023/A:1008381001328.

[9]

G. Contreras and R. Iturriaga, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems, 19 (1999), 901-952. doi: 10.1017/S014338579913387X.

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. Math., 21 (1976), 173-195. doi: 10.1016/0001-8708(76)90074-8.

[11]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Inv. Math., 155 (2004), 305-362. doi: 10.1007/s00222-003-0322-7.

[12]

M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. Ⅱ, Applied Mathematical Sciences, 69, Springer-Verlag, New-York, 1988. doi: 10.1007/978-1-4612-4574-2.

[13]

P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.

[14]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777. doi: 10.1007/s00220-009-0860-y.

[15]

M. LewisD. OffinP.-L. Buono and M. Kovacic, Instability of the periodic Hip-Hop orbit in the 2N-body problem with equal masses, Discrete and Continuous Dynamical Systems -A, 33 (2013), 1137-1155.

[16]

J. E. Marsden, Lectures on Mechanics, LMS Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511624001.

[17]

M. Morse, The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, 18 American Mathematical Society, Providence, 1996.

[18]

D. Offin, A spectral theorem for reversible second order equations with periodic coefficients, Differential and Integral Equations, 5 (1992), 615-629.

[19]

D. Offin, Hyperbolic minimizing geodesics, Trans. AMS, 352 (2000), 3323-3338. doi: 10.1090/S0002-9947-00-02483-1.

[20]

D. Offin and H. Cabral, Hyperbolic symmetric periodic orbits in the isosceles three-body problem, Disc. Cont. Dyn. Syst. Ser. S, 2 (2009), 379-392. doi: 10.3934/dcdss.2009.2.379.

[21]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963. doi: 10.1017/S0143385707000284.

[1]

Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177

[2]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[3]

V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277

[4]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[5]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[6]

Antonio J. Ureña. Instability of periodic minimals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 345-357. doi: 10.3934/dcds.2013.33.345

[7]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[8]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[9]

Abed Bounemoura, Edouard Pennamen. Instability for a priori unstable Hamiltonian systems: A dynamical approach. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 753-793. doi: 10.3934/dcds.2012.32.753

[10]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[11]

Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065

[12]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[13]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[14]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[15]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[16]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[17]

Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251

[18]

Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303

[19]

Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983

[20]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (12)
  • HTML views (109)
  • Cited by (0)

Other articles
by authors

[Back to Top]