June  2016, 8(2): 199-220. doi: 10.3934/jgm.2016004

Infinitesimally natural principal bundles

1. 

Universiteit Utrecht, Budapestlaan 6, 3584 CD Utrecht, Netherlands

Received  June 2015 Revised  April 2016 Published  June 2016

We extend the notion of a natural fibre bundle by requiring diffeomorphisms of the base to lift to automorphisms of the bundle only infinitesimally, i.e. at the level of the Lie algebra of vector fields. We classify the principal fibre bundles with this property. A version of the main result in this paper (theorem 4.4) can be found in Lecomte's work [12]. Our approach was developed independently, uses the language of Lie algebroids, and can be generalized in several directions.
Citation: Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004
References:
[1]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1997). doi: 10.1007/978-1-4757-6800-8. Google Scholar

[2]

D. W. Barnes, Nilpotency of Lie algebras,, Math. Zeitschr., 79 (1962), 237. doi: 10.1007/BF01193118. Google Scholar

[3]

M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T,, Rev. Math. Phys., 13 (2001), 953. doi: 10.1142/S0129055X01000922. Google Scholar

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575. doi: 10.4007/annals.2003.157.575. Google Scholar

[5]

D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,, Proc. London Math. Soc., 38 (1979), 219. doi: 10.1112/plms/s3-38.2.219. Google Scholar

[6]

D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras,, Contemporary Soviet Mathematics, (1986). Google Scholar

[7]

H. Glöckner, Differentiable mappings between spaces of sections, 2002., arXiv:1308.1172., (). Google Scholar

[8]

J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid,, Transform. Groups, 16 (2011), 137. doi: 10.1007/s00031-011-9126-9. Google Scholar

[9]

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,, Graduate Texts in Mathematics, (1972). Google Scholar

[10]

A. W. Knapp, Lie Groups Beyond an Introduction,, Birkhäuser, (1996). doi: 10.1007/978-1-4757-2453-0. Google Scholar

[11]

H. B. Lawson and M.-L. Michelsohn, Spin geometry,, Princeton University Press, (1994). Google Scholar

[12]

P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal,, Bulletin de la S. M. F., 113 (1985), 259. Google Scholar

[13]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series., Cambridge University Press, (1987). doi: 10.1017/CBO9780511661839. Google Scholar

[14]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions,, Amer. J. Math., 124 (2002), 567. doi: 10.1353/ajm.2002.0019. Google Scholar

[15]

S. Morrison, Classifying Spinor Structures,, Master's thesis, (2001). Google Scholar

[16]

K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445. doi: 10.1016/S0040-9383(98)00069-X. Google Scholar

[17]

A. Nijenhuis, Theory of the Geometric Object, 1952., Doctoral thesis, (). Google Scholar

[18]

A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields,, In Proc. Internat. Congress Math. 1958, (1958), 463. Google Scholar

[19]

A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited,, In Differential geometry (in honor of Kentaro Yano), (1972), 317. Google Scholar

[20]

R. S. Palais and C. L. Terng, Natural bundles have finite order,, Topology, 19 (1977), 271. Google Scholar

[21]

J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels»,, Math. Scand., 8 (1960), 116. Google Scholar

[22]

J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales,, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907. Google Scholar

[23]

S. E. Salvioli, On the theory of geometric objects,, J. Diff. Geom., 7 (1972), 257. Google Scholar

[24]

J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object,, Proc. London Math. Soc., S2-42 (1937), 2. doi: 10.1112/plms/s2-42.1.356. Google Scholar

[25]

M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold,, Proc. Amer. Math. Soc., 5 (1954), 468. doi: 10.1090/S0002-9939-1954-0064764-3. Google Scholar

[26]

Kōji Shiga and Toru Tsujishita, Differential representations of vector fields,, Kōdai Math. Sem. Rep., 28 (): 214. Google Scholar

[27]

F. Takens, Derivations of vector fields,, Comp. Math., 26 (1973), 151. Google Scholar

[28]

C. L. Terng, Natural vector bundles and natural differential operators,, Am. J. Math., 100 (1978), 775. doi: 10.2307/2373910. Google Scholar

[29]

A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie,, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366. Google Scholar

show all references

References:
[1]

A. Banyaga, The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1997). doi: 10.1007/978-1-4757-6800-8. Google Scholar

[2]

D. W. Barnes, Nilpotency of Lie algebras,, Math. Zeitschr., 79 (1962), 237. doi: 10.1007/BF01193118. Google Scholar

[3]

M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T,, Rev. Math. Phys., 13 (2001), 953. doi: 10.1142/S0129055X01000922. Google Scholar

[4]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575. doi: 10.4007/annals.2003.157.575. Google Scholar

[5]

D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,, Proc. London Math. Soc., 38 (1979), 219. doi: 10.1112/plms/s3-38.2.219. Google Scholar

[6]

D. B. Fuks, Cohomology of Infinite Dimensional Lie Algebras,, Contemporary Soviet Mathematics, (1986). Google Scholar

[7]

H. Glöckner, Differentiable mappings between spaces of sections, 2002., arXiv:1308.1172., (). Google Scholar

[8]

J. Grabowski, A. Kotov and N. Poncin, Geometric structures encoded in the Lie structure of an Atiyah algebroid,, Transform. Groups, 16 (2011), 137. doi: 10.1007/s00031-011-9126-9. Google Scholar

[9]

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory,, Graduate Texts in Mathematics, (1972). Google Scholar

[10]

A. W. Knapp, Lie Groups Beyond an Introduction,, Birkhäuser, (1996). doi: 10.1007/978-1-4757-2453-0. Google Scholar

[11]

H. B. Lawson and M.-L. Michelsohn, Spin geometry,, Princeton University Press, (1994). Google Scholar

[12]

P. B. A. Lecomte, Sur la suite exacte canonique associée à un fibré principal,, Bulletin de la S. M. F., 113 (1985), 259. Google Scholar

[13]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Mathematical Society Lecture Note Series., Cambridge University Press, (1987). doi: 10.1017/CBO9780511661839. Google Scholar

[14]

I. Moerdijk and J. Mrčun, On integrability of infinitesimal actions,, Amer. J. Math., 124 (2002), 567. doi: 10.1353/ajm.2002.0019. Google Scholar

[15]

S. Morrison, Classifying Spinor Structures,, Master's thesis, (2001). Google Scholar

[16]

K. C. H. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445. doi: 10.1016/S0040-9383(98)00069-X. Google Scholar

[17]

A. Nijenhuis, Theory of the Geometric Object, 1952., Doctoral thesis, (). Google Scholar

[18]

A. Nijenhuis, Geometric aspects of formal differential operations on tensors fields,, In Proc. Internat. Congress Math. 1958, (1958), 463. Google Scholar

[19]

A. Nijenhuis, Natural bundles and their general properties. Geometric objects revisited,, In Differential geometry (in honor of Kentaro Yano), (1972), 317. Google Scholar

[20]

R. S. Palais and C. L. Terng, Natural bundles have finite order,, Topology, 19 (1977), 271. Google Scholar

[21]

J. Peetre, Réctification (sic) à l'article «une caractérisation abstraite des opérateurs différentiels»,, Math. Scand., 8 (1960), 116. Google Scholar

[22]

J. Pradines, Théorie de Lie pour les groupoides différentiables, relation entre propriétés locales et globales,, Comptes Rendus Acad. Sci. Paris A, 263 (1966), 907. Google Scholar

[23]

S. E. Salvioli, On the theory of geometric objects,, J. Diff. Geom., 7 (1972), 257. Google Scholar

[24]

J. A. Schouten and J. Haantjes, On the Theory of the Geometric Object,, Proc. London Math. Soc., S2-42 (1937), 2. doi: 10.1112/plms/s2-42.1.356. Google Scholar

[25]

M. E. Shanks and L. E. Pursell, The Lie algebra of a smooth manifold,, Proc. Amer. Math. Soc., 5 (1954), 468. doi: 10.1090/S0002-9939-1954-0064764-3. Google Scholar

[26]

Kōji Shiga and Toru Tsujishita, Differential representations of vector fields,, Kōdai Math. Sem. Rep., 28 (): 214. Google Scholar

[27]

F. Takens, Derivations of vector fields,, Comp. Math., 26 (1973), 151. Google Scholar

[28]

C. L. Terng, Natural vector bundles and natural differential operators,, Am. J. Math., 100 (1978), 775. doi: 10.2307/2373910. Google Scholar

[29]

A. Wundheiler, Objekte, Invarianten und Klassifikation der Geometrie,, Abh. Sem. Vektor Tenzoranal. Moskau, 4 (1937), 366. Google Scholar

[1]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[2]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[3]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[4]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[5]

Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295

[6]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[7]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[8]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[9]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[10]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[11]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[12]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[13]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[14]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[15]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[16]

Marco Zambon, Chenchang Zhu. Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 469-485. doi: 10.3934/jgm.2012.4.469

[17]

Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243

[18]

Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017

[19]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[20]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]