June  2016, 8(2): 169-178. doi: 10.3934/jgm.2016002

Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier

1. 

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C. Concepción, Chile

2. 

Departamento de Matemática Aplicada, Universidad de Murcia, 30071 Espinardo, Spain

Received  August 2015 Revised  January 2016 Published  June 2016

Poisson and integrable systems are orbitally equivalent through the Nambu bracket. Namely, we show that every completely integrable system of differential equations may be expressed into the Poisson-Hamiltonian formalism by means of the Nambu-Hamilton equations of motion and a reparametrisation related by the Jacobian multiplier. The equations of motion provide a natural way for finding the Jacobian multiplier. As a consequence, we partially give an alternative proof of a recent theorem in [13]. We complete this work presenting some features associated to Hamiltonian maximally superintegrable systems.
Citation: Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002
References:
[1]

F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics,, Phys. Rev. D, 11 (1975), 3049. doi: 10.1103/PhysRevD.11.3049. Google Scholar

[2]

R. Chatterjee, Dynamical symmetries and Nambu mechanics,, Letters in Mathematical Physics, 36 (1996), 117. doi: 10.1007/BF00714375. Google Scholar

[3]

R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 475. doi: 10.1007/BF00312678. Google Scholar

[4]

S. Codriansky, R. Navarro and M. Pedroza, The Liouville condition and Nambu mechanics,, Journal of Physics A: Mathematical and General, 29 (1996), 1037. doi: 10.1088/0305-4470/29/5/017. Google Scholar

[5]

I. Cohen and A. Kálnay, On Nambu's generalized Hamiltonian mechanics,, International Journal of Theoretical Physics, 12 (1975), 61. doi: 10.1007/BF01884111. Google Scholar

[6]

F. Crespo and S. Ferrer, On the extended Euler system and the Jacobi and Weierstrass elliptic functions,, Journal of Geometric Mechanics, 7 (2015), 151. Google Scholar

[7]

F. Crespo and S. Ferrer, On the Nambu-Poisson systems and its integrability,, In preparation, (2015). Google Scholar

[8]

S. Ferrer, F. Crespo and F. J. Molero, On the N-Extended Euler system I. Generalized Jacobi elliptic functions,, Nonlinear Dynamics, 84 (2016), 413. Google Scholar

[9]

Gautheron, P., Some remarks concerning Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 103. doi: 10.1007/BF00400143. Google Scholar

[10]

A. Horikoshi and Y. Kawamura, Hidden Nambu mechanics: A variant formulation of hamiltonian systems,, Progress of Theoretical and Experimental Physics, (2013). Google Scholar

[11]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Dynamics of generalized Poisson and NambuPoisson brackets,, Journal of Mathematical Physics, 38 (1997), 2332. doi: 10.1063/1.531960. Google Scholar

[12]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Reduction of generalized Poisson and Nambu-Poisson manifolds,, Reports on Mathematical Physics, 42 (1998), 71. doi: 10.1016/S0034-4877(98)80005-0. Google Scholar

[13]

J. Llibre, C. Valls and X. Zhang, The completely integrable differential systems are essentially linear differential systems,, Journal of Nonlinear Science, 25 (2015), 815. doi: 10.1007/s00332-015-9243-z. Google Scholar

[14]

N. Makhaldiani, Nambu-Poisson dynamics with some applications,, Physics of Particles and Nuclei, 43 (2012), 703. Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Springer-Verlag New York, (1999). Google Scholar

[16]

K. Modin, Time transformation and reversibility of Nambu-Poisson systems,, J. Gen. Lie Theory Appl., 3 (2009), 39. doi: 10.4303/jglta/S080103. Google Scholar

[17]

P. Morando, Liouville condition, Nambu mechanics, and differential forms,, Journal of Physics A: Mathematical and General, 29 (1996). doi: 10.1088/0305-4470/29/13/004. Google Scholar

[18]

N. Mukunda and E. C. G. Sudarshan, Relation between Nambu and Hamiltonian mechanics,, Phys. Rev. D, 13 (1976), 2846. doi: 10.1103/PhysRevD.13.2846. Google Scholar

[19]

Y. Nambu, Generalized Hamiltonian mechanics,, Phys. Rev., 7 (1973), 2405. doi: 10.1103/PhysRevD.7.2405. Google Scholar

[20]

S. Pandit and A. Gangal, On generalized Nambu mechanics,, Journal of Physics A: Mathematical and General, 31 (1998), 2899. doi: 10.1088/0305-4470/31/12/014. Google Scholar

[21]

O. Rössler, An equation for continuous chaos,, Phys. Lett. A, 57 (1987), 397. Google Scholar

[22]

L. Takhtajan, On foundation of the generalized Nambu mechanics,, Communications in Mathematical Physics, 160 (1994), 295. doi: 10.1007/BF02103278. Google Scholar

[23]

R. Tudoran and A. Gîrban, On the completely integrable case of the Rössler system,, Journal of Mathematical Physics, (2012). Google Scholar

[24]

I. Vaisman, A survey on Nambu-Poisson brackets,, Acta Mathematica Universitatis Comenianae. New Series, 68 (1999), 213. Google Scholar

show all references

References:
[1]

F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics,, Phys. Rev. D, 11 (1975), 3049. doi: 10.1103/PhysRevD.11.3049. Google Scholar

[2]

R. Chatterjee, Dynamical symmetries and Nambu mechanics,, Letters in Mathematical Physics, 36 (1996), 117. doi: 10.1007/BF00714375. Google Scholar

[3]

R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 475. doi: 10.1007/BF00312678. Google Scholar

[4]

S. Codriansky, R. Navarro and M. Pedroza, The Liouville condition and Nambu mechanics,, Journal of Physics A: Mathematical and General, 29 (1996), 1037. doi: 10.1088/0305-4470/29/5/017. Google Scholar

[5]

I. Cohen and A. Kálnay, On Nambu's generalized Hamiltonian mechanics,, International Journal of Theoretical Physics, 12 (1975), 61. doi: 10.1007/BF01884111. Google Scholar

[6]

F. Crespo and S. Ferrer, On the extended Euler system and the Jacobi and Weierstrass elliptic functions,, Journal of Geometric Mechanics, 7 (2015), 151. Google Scholar

[7]

F. Crespo and S. Ferrer, On the Nambu-Poisson systems and its integrability,, In preparation, (2015). Google Scholar

[8]

S. Ferrer, F. Crespo and F. J. Molero, On the N-Extended Euler system I. Generalized Jacobi elliptic functions,, Nonlinear Dynamics, 84 (2016), 413. Google Scholar

[9]

Gautheron, P., Some remarks concerning Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 103. doi: 10.1007/BF00400143. Google Scholar

[10]

A. Horikoshi and Y. Kawamura, Hidden Nambu mechanics: A variant formulation of hamiltonian systems,, Progress of Theoretical and Experimental Physics, (2013). Google Scholar

[11]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Dynamics of generalized Poisson and NambuPoisson brackets,, Journal of Mathematical Physics, 38 (1997), 2332. doi: 10.1063/1.531960. Google Scholar

[12]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Reduction of generalized Poisson and Nambu-Poisson manifolds,, Reports on Mathematical Physics, 42 (1998), 71. doi: 10.1016/S0034-4877(98)80005-0. Google Scholar

[13]

J. Llibre, C. Valls and X. Zhang, The completely integrable differential systems are essentially linear differential systems,, Journal of Nonlinear Science, 25 (2015), 815. doi: 10.1007/s00332-015-9243-z. Google Scholar

[14]

N. Makhaldiani, Nambu-Poisson dynamics with some applications,, Physics of Particles and Nuclei, 43 (2012), 703. Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Springer-Verlag New York, (1999). Google Scholar

[16]

K. Modin, Time transformation and reversibility of Nambu-Poisson systems,, J. Gen. Lie Theory Appl., 3 (2009), 39. doi: 10.4303/jglta/S080103. Google Scholar

[17]

P. Morando, Liouville condition, Nambu mechanics, and differential forms,, Journal of Physics A: Mathematical and General, 29 (1996). doi: 10.1088/0305-4470/29/13/004. Google Scholar

[18]

N. Mukunda and E. C. G. Sudarshan, Relation between Nambu and Hamiltonian mechanics,, Phys. Rev. D, 13 (1976), 2846. doi: 10.1103/PhysRevD.13.2846. Google Scholar

[19]

Y. Nambu, Generalized Hamiltonian mechanics,, Phys. Rev., 7 (1973), 2405. doi: 10.1103/PhysRevD.7.2405. Google Scholar

[20]

S. Pandit and A. Gangal, On generalized Nambu mechanics,, Journal of Physics A: Mathematical and General, 31 (1998), 2899. doi: 10.1088/0305-4470/31/12/014. Google Scholar

[21]

O. Rössler, An equation for continuous chaos,, Phys. Lett. A, 57 (1987), 397. Google Scholar

[22]

L. Takhtajan, On foundation of the generalized Nambu mechanics,, Communications in Mathematical Physics, 160 (1994), 295. doi: 10.1007/BF02103278. Google Scholar

[23]

R. Tudoran and A. Gîrban, On the completely integrable case of the Rössler system,, Journal of Mathematical Physics, (2012). Google Scholar

[24]

I. Vaisman, A survey on Nambu-Poisson brackets,, Acta Mathematica Universitatis Comenianae. New Series, 68 (1999), 213. Google Scholar

[1]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[2]

Frol Zapolsky. Quasi-states and the Poisson bracket on surfaces. Journal of Modern Dynamics, 2007, 1 (3) : 465-475. doi: 10.3934/jmd.2007.1.465

[3]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[4]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[5]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[6]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

[7]

Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557

[8]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[9]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[10]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[11]

Octavian G. Mustafa, Yuri V. Rogovchenko. Existence of square integrable solutions of perturbed nonlinear differential equations. Conference Publications, 2003, 2003 (Special) : 647-655. doi: 10.3934/proc.2003.2003.647

[12]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[13]

Bernard Dacorogna, Olivier Kneuss. Multiple Jacobian equations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1779-1787. doi: 10.3934/cpaa.2014.13.1779

[14]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[15]

Irene M. Gamba, Maria Pia Gualdani, Christof Sparber. A note on the time decay of solutions for the linearized Wigner-Poisson system. Kinetic & Related Models, 2009, 2 (1) : 181-189. doi: 10.3934/krm.2009.2.181

[16]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[17]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[18]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[19]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[20]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]