September  2015, 7(3): 361-387. doi: 10.3934/jgm.2015.7.361

The emergence of torsion in the continuum limit of distributed edge-dislocations

1. 

Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel, Israel

Received  September 2014 Revised  May 2015 Published  July 2015

We present a rigorous homogenization theorem for distributed edge-dislocations. We construct a sequence of locally-flat 2D Riemannian manifolds with dislocation-type singularities. We show that this sequence converges, as the dislocations become denser, to a flat non-singular Weitzenböck manifold, i.e. a flat manifold endowed with a metrically-consistent connection with zero curvature and non-zero torsion. In the process, we introduce a new notion of convergence of Weitzenböck manifolds, which is relevant to this class of homogenization problems.
Citation: Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361
References:
[1]

I. Agricola and C. Thier, The geodesics of metric connections with vectorial torsion,, Ann. Global Anal. Geom., 26 (2004), 321. doi: 10.1023/B:AGAG.0000047509.63818.4f.

[2]

B. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: A new application of the methods of Non-Riemannian geometry,, Proc. Roy. Soc. A, 231 (1955), 263. doi: 10.1098/rspa.1955.0171.

[3]

B. Bilby and E. Smith, Continuous distributions of dislocations. III,, Proc. Roy. Soc. Edin. A, 236 (1956), 481. doi: 10.1098/rspa.1956.0150.

[4]

M. Do Carmo, Riemannian Geometry,, Birkhäuser, (1992).

[5]

D. J. H. Garling, Inequalities: A Journey into Linear Analysis,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511755217.

[6]

J. Guven, J. Hanna, O. Kahraman and M. Müller, Dipoles in thin sheets,, Eur. Phys. J. E, 36 (2013). doi: 10.1140/epje/i2013-13106-0.

[7]

J. Heinonen, Lectures on Lipschitz Analysis,, Jyväskylän Yliopistopaino, (2005).

[8]

K. Kondo, Geometry of elastic deformation and incompatibility,, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (ed. K. Kondo), 1 (1955), 5.

[9]

E. Kroner, The Physics of Defects,, in Les Houches Summer School Proceedings (eds. R. Balian, (1981).

[10]

R. Kupferman, M. Moshe and J. Solomon, Metric description of defects in amorphous materials,, Arch. Rat. Mech. Anal., 216 (2015), 1009.

[11]

J. Nye, Some geometrical relations in dislocated crystals,, Acta Met., 1 (1953), 153. doi: 10.1016/0001-6160(53)90054-6.

[12]

A. Ozakin and A. Yavari, Affine development of closed curves in Weitzenböck manifolds and the burgers vector of dislocation mechanics,, Math. Mech. Solids, 19 (2014), 299. doi: 10.1177/1081286512463720.

[13]

P. Petersen, Riemannian Geometry,, 2nd edition, (2006).

[14]

H. Seung and D. Nelson, Defects in flexible membranes with crystalline order,, Phys. Rev. A, 38 (1988), 1005. doi: 10.1103/PhysRevA.38.1005.

[15]

V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes,, Ann. Sci. Ecole Norm. Sup. Paris 1907, 24 (1907), 401.

[16]

C.-C. Wang, On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations,, Arch. Rat. Mech. Anal., 27 (1967), 33. doi: 10.1007/BF00276434.

show all references

References:
[1]

I. Agricola and C. Thier, The geodesics of metric connections with vectorial torsion,, Ann. Global Anal. Geom., 26 (2004), 321. doi: 10.1023/B:AGAG.0000047509.63818.4f.

[2]

B. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: A new application of the methods of Non-Riemannian geometry,, Proc. Roy. Soc. A, 231 (1955), 263. doi: 10.1098/rspa.1955.0171.

[3]

B. Bilby and E. Smith, Continuous distributions of dislocations. III,, Proc. Roy. Soc. Edin. A, 236 (1956), 481. doi: 10.1098/rspa.1956.0150.

[4]

M. Do Carmo, Riemannian Geometry,, Birkhäuser, (1992).

[5]

D. J. H. Garling, Inequalities: A Journey into Linear Analysis,, Cambridge University Press, (2007). doi: 10.1017/CBO9780511755217.

[6]

J. Guven, J. Hanna, O. Kahraman and M. Müller, Dipoles in thin sheets,, Eur. Phys. J. E, 36 (2013). doi: 10.1140/epje/i2013-13106-0.

[7]

J. Heinonen, Lectures on Lipschitz Analysis,, Jyväskylän Yliopistopaino, (2005).

[8]

K. Kondo, Geometry of elastic deformation and incompatibility,, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (ed. K. Kondo), 1 (1955), 5.

[9]

E. Kroner, The Physics of Defects,, in Les Houches Summer School Proceedings (eds. R. Balian, (1981).

[10]

R. Kupferman, M. Moshe and J. Solomon, Metric description of defects in amorphous materials,, Arch. Rat. Mech. Anal., 216 (2015), 1009.

[11]

J. Nye, Some geometrical relations in dislocated crystals,, Acta Met., 1 (1953), 153. doi: 10.1016/0001-6160(53)90054-6.

[12]

A. Ozakin and A. Yavari, Affine development of closed curves in Weitzenböck manifolds and the burgers vector of dislocation mechanics,, Math. Mech. Solids, 19 (2014), 299. doi: 10.1177/1081286512463720.

[13]

P. Petersen, Riemannian Geometry,, 2nd edition, (2006).

[14]

H. Seung and D. Nelson, Defects in flexible membranes with crystalline order,, Phys. Rev. A, 38 (1988), 1005. doi: 10.1103/PhysRevA.38.1005.

[15]

V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes,, Ann. Sci. Ecole Norm. Sup. Paris 1907, 24 (1907), 401.

[16]

C.-C. Wang, On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations,, Arch. Rat. Mech. Anal., 27 (1967), 33. doi: 10.1007/BF00276434.

[1]

Samir Chowdhury, Facundo Mémoli. Explicit geodesics in Gromov-Hausdorff space. Electronic Research Announcements, 2018, 25: 48-59. doi: 10.3934/era.2018.25.006

[2]

Alexanger Arbieto, Carlos Arnoldo Morales Rojas. Topological stability from Gromov-Hausdorff viewpoint. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3531-3544. doi: 10.3934/dcds.2017151

[3]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[4]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[5]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[6]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[7]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks & Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[8]

Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks & Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503

[9]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[10]

Vitali Kapovitch, Anton Petrunin, Wilderich Tuschmann. On the torsion in the center conjecture. Electronic Research Announcements, 2018, 25: 27-35. doi: 10.3934/era.2018.25.004

[11]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[12]

Kingshook Biswas. Maximal abelian torsion subgroups of Diff( C,0). Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 839-844. doi: 10.3934/dcds.2011.29.839

[13]

Stéphane Sabourau. Growth of quotients of groups acting by isometries on Gromov-hyperbolic spaces. Journal of Modern Dynamics, 2013, 7 (2) : 269-290. doi: 10.3934/jmd.2013.7.269

[14]

Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010

[15]

Sanda Cleja-Ţigoiu, Raisa Paşcan. Non-local elasto-viscoplastic models with dislocations and non-Schmid effect. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1621-1639. doi: 10.3934/dcdss.2013.6.1621

[16]

Michael Scheutzow, Maite Wilke-Berenguer. Random Delta-Hausdorff-attractors. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1199-1217. doi: 10.3934/dcdsb.2018148

[17]

Wouter Castryck, Marco Streng, Damiano Testa. Curves in characteristic $2$ with non-trivial $2$-torsion. Advances in Mathematics of Communications, 2014, 8 (4) : 479-495. doi: 10.3934/amc.2014.8.479

[18]

Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200

[19]

A. Yu. Ol'shanskii and M. V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. Electronic Research Announcements, 2001, 7: 63-71.

[20]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]