September  2015, 7(3): 295-315. doi: 10.3934/jgm.2015.7.295

Lie algebroids generated by cohomology operators

1. 

Departamento de Matemáticas, Universidad de Sonora, Blvd. Encinas y Rosales, Edi cio 3K-1, Hermosillo, Son 83000, Mexico

2. 

Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Lat. Av. Salvador Nava s/n Col. Lomas, San Luis Potosí, SLP 78290, Mexico

3. 

Departamento de Matemáticas, Universidad de Sonora, Blvd. Encinas y Rosales, Edificio 3K-1, Hermosillo, Son 83000, Mexico

Received  October 2014 Revised  May 2015 Published  July 2015

By studying the Frölicher-Nijenhuis decomposition of cohomology operators (that is, derivations $D$ of the exterior algebra $\Omega (M)$ with $\mathbb{Z}-$degree $1$ and $D^2=0$), we describe new examples of Lie algebroid structures on the tangent bundle $TM$ (and its complexification $T^{\mathbb{C}}M$) constructed from pre-existing geometric ones such as foliations, complex, product or tangent structures. We also describe a class of Lie algebroids on tangent bundles associated to idempotent endomorphisms with nontrivial Nijenhuis torsion.
Citation: Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295
References:
[1]

W. Ambrose, R. S. Palais and I. M. Singer, Sprays,, An. Acad. Bras. Cie., 32 (1960), 163. Google Scholar

[2]

A. D. Blaom, Geometric structures as deformed infinitesimal symmetries,, Trans. Amer. Math. Soc., 358 (2006), 3651. doi: 10.1090/S0002-9947-06-04057-8. Google Scholar

[3]

F. Cantrijn, J. Cariñena, J. Crampin and L. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353. doi: 10.1016/0393-0440(86)90014-8. Google Scholar

[4]

J. Clemente-Gallardo, Applications of Lie algebroids in mechanics and control theory,, in Nonlinear control in the Year 2000, 258 (2001), 299. doi: 10.1007/BFb0110222. Google Scholar

[5]

M. Crainic and R. L. Fernandes, Lectures on integrability of Lie brackets,, Geometry and Topology Monographs, 17 (2011), 1. doi: 10.2140/gtm.2011.17.1. Google Scholar

[6]

M. Crainic and I. Moerdijk, Deformations of Lie brackets: Cohomological aspects,, J. Eur. Math. Soc., 10 (2008), 1037. doi: 10.4171/JEMS/139. Google Scholar

[7]

M. Crampin, On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics,, J. Phys. A: Math. Gen., 14 (1981), 2567. doi: 10.1088/0305-4470/14/10/012. Google Scholar

[8]

L. De Andrés, M. De León and P. R. Rodrigues, Connections on tangent bundles of higher order associated to regular Lagrangians,, Geometriae Dedicata, 39 (1991), 17. doi: 10.1007/BF00147300. Google Scholar

[9]

M. De León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,, North-Holland Mathematics Studies, 158 (1998). Google Scholar

[10]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes,, Adv. in Math., 170 (2002), 119. doi: 10.1006/aima.2001.2070. Google Scholar

[11]

A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms. Part I.,, Indagationes Math., 18 (1956), 338. doi: 10.1016/S1385-7258(56)50046-7. Google Scholar

[12]

J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101. Google Scholar

[13]

J. Grabowski, Brackets,, Int. J. of Geom. Methods in Mod. Phys., 10 (2013). doi: 10.1142/S0219887813600013. Google Scholar

[14]

J. Grifone, Structure presque-tangente et connexions,, Ann. Inst. Fourier, 22 (1972), 287. doi: 10.5802/aif.407. Google Scholar

[15]

D. Husemöller, M. Joachim, B. Jurčo and M. Schottenloher, Basic Bundle Theory and $K-$Cohomology Invariants,, Lecture Notes in Physics, 726 (2008). doi: 10.1007/978-3-540-74956-1. Google Scholar

[16]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry,, 2nd edition, (1993). doi: 10.1007/978-3-662-02950-3. Google Scholar

[17]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures,, Annales de l'I.H.P., 53 (1990), 35. Google Scholar

[18]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras,, Annales de l'Institut Fourier, 46 (1996), 1243. doi: 10.5802/aif.1547. Google Scholar

[19]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, London Math. Soc. Lec. Notes, 213 (2005). doi: 10.2277/0521499283. Google Scholar

[20]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA, 3 (2007). doi: 10.3842/SIGMA.2007.050. Google Scholar

[21]

P. W. Michor, Remarks on the Frölicher-Nijenhuis bracket,, Differential geometry and its applications (Brno, (1986), 197. Google Scholar

[22]

J. Monterde and A. Montesinos, Integral curves of derivations,, Ann. of Global Anal. and Geom., 6 (1988), 177. doi: 10.1007/BF00133038. Google Scholar

[23]

A. Nijenhuis and R. Richardson, Deformation of Lie algebra structures,, J. Math. Mech., 17 (1967), 89. doi: 10.1512/iumj.1968.17.17005. Google Scholar

[24]

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I,, Indagationes Math., 17 (1955), 390. doi: 10.1016/S1385-7258(55)50054-0. Google Scholar

[25]

I. Vaisman, Cohomology and Differential Forms,, Marcel Dekker Inc., (1973). Google Scholar

[26]

A. Weinstein, Lagrangian Mechanics and Groupoids,, in Mechanics Day, 7 (1996), 207. Google Scholar

[27]

A. Weinstein, The Integration Problem for Complex Lie Algebroids,, in From Geometry to Quantum Mechanics, 252 (2007), 93. doi: 10.1007/978-0-8176-4530-4\_7. Google Scholar

show all references

References:
[1]

W. Ambrose, R. S. Palais and I. M. Singer, Sprays,, An. Acad. Bras. Cie., 32 (1960), 163. Google Scholar

[2]

A. D. Blaom, Geometric structures as deformed infinitesimal symmetries,, Trans. Amer. Math. Soc., 358 (2006), 3651. doi: 10.1090/S0002-9947-06-04057-8. Google Scholar

[3]

F. Cantrijn, J. Cariñena, J. Crampin and L. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353. doi: 10.1016/0393-0440(86)90014-8. Google Scholar

[4]

J. Clemente-Gallardo, Applications of Lie algebroids in mechanics and control theory,, in Nonlinear control in the Year 2000, 258 (2001), 299. doi: 10.1007/BFb0110222. Google Scholar

[5]

M. Crainic and R. L. Fernandes, Lectures on integrability of Lie brackets,, Geometry and Topology Monographs, 17 (2011), 1. doi: 10.2140/gtm.2011.17.1. Google Scholar

[6]

M. Crainic and I. Moerdijk, Deformations of Lie brackets: Cohomological aspects,, J. Eur. Math. Soc., 10 (2008), 1037. doi: 10.4171/JEMS/139. Google Scholar

[7]

M. Crampin, On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics,, J. Phys. A: Math. Gen., 14 (1981), 2567. doi: 10.1088/0305-4470/14/10/012. Google Scholar

[8]

L. De Andrés, M. De León and P. R. Rodrigues, Connections on tangent bundles of higher order associated to regular Lagrangians,, Geometriae Dedicata, 39 (1991), 17. doi: 10.1007/BF00147300. Google Scholar

[9]

M. De León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,, North-Holland Mathematics Studies, 158 (1998). Google Scholar

[10]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes,, Adv. in Math., 170 (2002), 119. doi: 10.1006/aima.2001.2070. Google Scholar

[11]

A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms. Part I.,, Indagationes Math., 18 (1956), 338. doi: 10.1016/S1385-7258(56)50046-7. Google Scholar

[12]

J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101. Google Scholar

[13]

J. Grabowski, Brackets,, Int. J. of Geom. Methods in Mod. Phys., 10 (2013). doi: 10.1142/S0219887813600013. Google Scholar

[14]

J. Grifone, Structure presque-tangente et connexions,, Ann. Inst. Fourier, 22 (1972), 287. doi: 10.5802/aif.407. Google Scholar

[15]

D. Husemöller, M. Joachim, B. Jurčo and M. Schottenloher, Basic Bundle Theory and $K-$Cohomology Invariants,, Lecture Notes in Physics, 726 (2008). doi: 10.1007/978-3-540-74956-1. Google Scholar

[16]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry,, 2nd edition, (1993). doi: 10.1007/978-3-662-02950-3. Google Scholar

[17]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures,, Annales de l'I.H.P., 53 (1990), 35. Google Scholar

[18]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras,, Annales de l'Institut Fourier, 46 (1996), 1243. doi: 10.5802/aif.1547. Google Scholar

[19]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, London Math. Soc. Lec. Notes, 213 (2005). doi: 10.2277/0521499283. Google Scholar

[20]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA, 3 (2007). doi: 10.3842/SIGMA.2007.050. Google Scholar

[21]

P. W. Michor, Remarks on the Frölicher-Nijenhuis bracket,, Differential geometry and its applications (Brno, (1986), 197. Google Scholar

[22]

J. Monterde and A. Montesinos, Integral curves of derivations,, Ann. of Global Anal. and Geom., 6 (1988), 177. doi: 10.1007/BF00133038. Google Scholar

[23]

A. Nijenhuis and R. Richardson, Deformation of Lie algebra structures,, J. Math. Mech., 17 (1967), 89. doi: 10.1512/iumj.1968.17.17005. Google Scholar

[24]

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I,, Indagationes Math., 17 (1955), 390. doi: 10.1016/S1385-7258(55)50054-0. Google Scholar

[25]

I. Vaisman, Cohomology and Differential Forms,, Marcel Dekker Inc., (1973). Google Scholar

[26]

A. Weinstein, Lagrangian Mechanics and Groupoids,, in Mechanics Day, 7 (1996), 207. Google Scholar

[27]

A. Weinstein, The Integration Problem for Complex Lie Algebroids,, in From Geometry to Quantum Mechanics, 252 (2007), 93. doi: 10.1007/978-0-8176-4530-4\_7. Google Scholar

[1]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[2]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[3]

Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619

[4]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[5]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[6]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[7]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[8]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[9]

Keizo Hasegawa. Complex moduli and pseudo-Kahler structures on three-dimensional compact complex solvmanifolds. Electronic Research Announcements, 2007, 14: 30-34. doi: 10.3934/era.2007.14.30

[10]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[11]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[12]

Matthias Liero, Alexander Mielke, Mark A. Peletier, D. R. Michiel Renger. On microscopic origins of generalized gradient structures. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 1-35. doi: 10.3934/dcdss.2017001

[13]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[14]

S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577

[15]

Giovanni Rastelli, Manuele Santoprete. Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures. Journal of Geometric Mechanics, 2015, 7 (4) : 483-515. doi: 10.3934/jgm.2015.7.483

[16]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[17]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[18]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

[19]

Nicola Sansonetto, Daniele Sepe. Twisted isotropic realisations of twisted Poisson structures. Journal of Geometric Mechanics, 2013, 5 (2) : 233-256. doi: 10.3934/jgm.2013.5.233

[20]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]