March  2014, 6(1): 39-66. doi: 10.3934/jgm.2014.6.39

Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes

1. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received  December 2012 Revised  February 2014 Published  April 2014

In this paper, we derive the equations of motion for an elastic body interacting with a perfect fluid via the framework of Lagrange-Poincaré reduction. We model the combined fluid-structure system as a geodesic curve on the total space of a principal bundle on which a diffeomorphism group acts. After reduction by the diffeomorphism group we obtain the fluid-structure interactions where the fluid evolves by the inviscid fluid equations. Along the way, we describe various geometric structures appearing in fluid-structure interactions: principal connections, Lie groupoids, Lie algebroids, etc. We finish by introducing viscosity in our framework as an external force and adding the no-slip boundary condition. The result is a description of an elastic body immersed in a Navier-Stokes fluid as an externally forced Lagrange-Poincaré equation. Expressing fluid-structure interactions with Lagrange-Poincaré theory provides an alternative to the traditional description of the Navier-Stokes equations on an evolving domain.
Citation: Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, 2nd edition, (2000). Google Scholar

[2]

R. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, vol. 75 of Applied Mathematical Sciences,, 3rd edition, (2009). Google Scholar

[3]

V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de l'Institut Fourier, 16 (1966), 316. doi: 10.5802/aif.233. Google Scholar

[4]

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, vol. 24 of Applied Mathematical Sciences,, 125. Springer-Verlag, (1998). Google Scholar

[5]

G. K. Batchelor, An Introduction to Fluid Dynamics,, Cambridge University Press, (1999). Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian Reduction by Stages,, Mem. Amer. Math. Soc., 152 (2001). doi: 10.1090/memo/0722. Google Scholar

[7]

R. L. Fernandes and I. Struchiner, Lie algebroids and classification problems in geometry,, São Paulo J. Math. Sci., 2 (2008), 263. Google Scholar

[8]

E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories,, Physica D: Nonlinear Phenomena, 240 (2011), 1724. doi: 10.1016/j.physd.2011.07.011. Google Scholar

[9]

F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids,, Advances in Applied Mathematics, 42 (2009), 176. doi: 10.1016/j.aam.2008.06.002. Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure Preserving Algorithms for Ordinary Differential Equations, vol. 31 of Series in Computational Mathematics,, Springer Verlag, (2002). Google Scholar

[11]

H. O. Jacobs, T. S. Ratiu and M. Desbrun, On the coupling between an ideal fluid and immersed particles,, Phys. D, 265 (2013), 40. doi: 10.1016/j.physd.2013.09.004. Google Scholar

[12]

E. Kanso, J. E. Marsden, C. W. Rowley and J. B. Melli-Huber, Locomotion of articulated bodies in a perfect fluid,, Journal of Nonlinear Science, 15 (2005), 255. doi: 10.1007/s00332-004-0650-9. Google Scholar

[13]

S. D. Kelly, The Mechanics and Control of Robotic Locomotion with Applications to Aquatic Vehicles,, PhD thesis, (1998). Google Scholar

[14]

S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol I,, Interscience Publishers, (1963). Google Scholar

[15]

I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry,, Springer-Verlag, (1993). Google Scholar

[16]

H. Lamb, Hydrodynamics,, Reprint of the 1932 Cambridge University Press edition, (1932). Google Scholar

[17]

T. Lee, M. Leok and N. H. McClamroch, Computational geometric optimal control of rigid bodies,, Communications in Information and Systems, 8 (2008), 445. doi: 10.4310/CIS.2008.v8.n4.a5. Google Scholar

[18]

D. Lewis, J. E. Marsden, R. Montgomery and T. S. Ratiu, The Hamiltonian structure for dynamic free boundary problems,, Phys. D, 18 (1986), 391. doi: 10.1016/0167-2789(86)90207-1. Google Scholar

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313. doi: 10.1088/0951-7715/19/6/006. Google Scholar

[20]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity,, Corrected reprint of the 1983 original. Dover Publications, (1983). Google Scholar

[21]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, ZAMP, 44 (1993), 17. doi: 10.1007/BF00914351. Google Scholar

[22]

J. E. Marsden and J. Scheurle, The reduced Euler-Lagrange equations,, Fields Institute Communications, 1 (1993), 139. Google Scholar

[23]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357. doi: 10.1017/S096249290100006X. Google Scholar

[24]

J. E. Radford, Symmetry, Reduction and Swimming in a Perfect Fluid,, PhD thesis, (2003). Google Scholar

[25]

G. Schwarz, Hodge Decomposition-A Method for Solving Boundary Value Problems, vol. 1607 of Lecture Notes in Mathematics,, Springer-Verlag, (1995). Google Scholar

[26]

A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number,, Journal of Fluid Mechanics, 198 (1989), 557. doi: 10.1017/S002211208900025X. Google Scholar

[27]

M. Troyanov, On the Hodge decomposition in $\mathbbR^n$,, Mosc. Math. J., 9 (2009), 899. Google Scholar

[28]

J. Vankerschaver, E. Kanso and J. E. Marsden, The geometry and dynamics of interacting rigid bodies and point vortices,, Journal of Geometric Mechanics, 1 (2009), 223. doi: 10.3934/jgm.2009.1.223. Google Scholar

[29]

J. Vankerschaver, E. Kanso and J. E. Marsden, The dynamics of a rigid body in potential flow with circulation,, Reg. Chaot. Dyn., 15 (2010), 606. doi: 10.1134/S1560354710040143. Google Scholar

[30]

A. Weinstein, Lagrangian mechanics and groupoids,, in Mechanics Day, (1996), 207. Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, 2nd edition, (2000). Google Scholar

[2]

R. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, vol. 75 of Applied Mathematical Sciences,, 3rd edition, (2009). Google Scholar

[3]

V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de l'Institut Fourier, 16 (1966), 316. doi: 10.5802/aif.233. Google Scholar

[4]

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, vol. 24 of Applied Mathematical Sciences,, 125. Springer-Verlag, (1998). Google Scholar

[5]

G. K. Batchelor, An Introduction to Fluid Dynamics,, Cambridge University Press, (1999). Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian Reduction by Stages,, Mem. Amer. Math. Soc., 152 (2001). doi: 10.1090/memo/0722. Google Scholar

[7]

R. L. Fernandes and I. Struchiner, Lie algebroids and classification problems in geometry,, São Paulo J. Math. Sci., 2 (2008), 263. Google Scholar

[8]

E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories,, Physica D: Nonlinear Phenomena, 240 (2011), 1724. doi: 10.1016/j.physd.2011.07.011. Google Scholar

[9]

F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids,, Advances in Applied Mathematics, 42 (2009), 176. doi: 10.1016/j.aam.2008.06.002. Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure Preserving Algorithms for Ordinary Differential Equations, vol. 31 of Series in Computational Mathematics,, Springer Verlag, (2002). Google Scholar

[11]

H. O. Jacobs, T. S. Ratiu and M. Desbrun, On the coupling between an ideal fluid and immersed particles,, Phys. D, 265 (2013), 40. doi: 10.1016/j.physd.2013.09.004. Google Scholar

[12]

E. Kanso, J. E. Marsden, C. W. Rowley and J. B. Melli-Huber, Locomotion of articulated bodies in a perfect fluid,, Journal of Nonlinear Science, 15 (2005), 255. doi: 10.1007/s00332-004-0650-9. Google Scholar

[13]

S. D. Kelly, The Mechanics and Control of Robotic Locomotion with Applications to Aquatic Vehicles,, PhD thesis, (1998). Google Scholar

[14]

S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol I,, Interscience Publishers, (1963). Google Scholar

[15]

I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry,, Springer-Verlag, (1993). Google Scholar

[16]

H. Lamb, Hydrodynamics,, Reprint of the 1932 Cambridge University Press edition, (1932). Google Scholar

[17]

T. Lee, M. Leok and N. H. McClamroch, Computational geometric optimal control of rigid bodies,, Communications in Information and Systems, 8 (2008), 445. doi: 10.4310/CIS.2008.v8.n4.a5. Google Scholar

[18]

D. Lewis, J. E. Marsden, R. Montgomery and T. S. Ratiu, The Hamiltonian structure for dynamic free boundary problems,, Phys. D, 18 (1986), 391. doi: 10.1016/0167-2789(86)90207-1. Google Scholar

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313. doi: 10.1088/0951-7715/19/6/006. Google Scholar

[20]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity,, Corrected reprint of the 1983 original. Dover Publications, (1983). Google Scholar

[21]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, ZAMP, 44 (1993), 17. doi: 10.1007/BF00914351. Google Scholar

[22]

J. E. Marsden and J. Scheurle, The reduced Euler-Lagrange equations,, Fields Institute Communications, 1 (1993), 139. Google Scholar

[23]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357. doi: 10.1017/S096249290100006X. Google Scholar

[24]

J. E. Radford, Symmetry, Reduction and Swimming in a Perfect Fluid,, PhD thesis, (2003). Google Scholar

[25]

G. Schwarz, Hodge Decomposition-A Method for Solving Boundary Value Problems, vol. 1607 of Lecture Notes in Mathematics,, Springer-Verlag, (1995). Google Scholar

[26]

A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number,, Journal of Fluid Mechanics, 198 (1989), 557. doi: 10.1017/S002211208900025X. Google Scholar

[27]

M. Troyanov, On the Hodge decomposition in $\mathbbR^n$,, Mosc. Math. J., 9 (2009), 899. Google Scholar

[28]

J. Vankerschaver, E. Kanso and J. E. Marsden, The geometry and dynamics of interacting rigid bodies and point vortices,, Journal of Geometric Mechanics, 1 (2009), 223. doi: 10.3934/jgm.2009.1.223. Google Scholar

[29]

J. Vankerschaver, E. Kanso and J. E. Marsden, The dynamics of a rigid body in potential flow with circulation,, Reg. Chaot. Dyn., 15 (2010), 606. doi: 10.1134/S1560354710040143. Google Scholar

[30]

A. Weinstein, Lagrangian mechanics and groupoids,, in Mechanics Day, (1996), 207. Google Scholar

[1]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[2]

Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199

[3]

Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluid-structure interaction. Networks & Heterogeneous Media, 2008, 3 (4) : 787-813. doi: 10.3934/nhm.2008.3.787

[4]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[5]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-14. doi: 10.3934/dcdss.2020071

[6]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[7]

Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179-193. doi: 10.3934/mbe.2017012

[8]

Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks & Heterogeneous Media, 2007, 2 (3) : 397-423. doi: 10.3934/nhm.2007.2.397

[9]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[10]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[11]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[12]

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102

[13]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[14]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[15]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[16]

Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems & Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83

[17]

Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173

[18]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[19]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[20]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]