June  2014, 6(2): 237-260. doi: 10.3934/jgm.2014.6.237

Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry

1. 

School of Mathematics, University of Manchester, Manchester, M13 9PL

Received  November 2013 Revised  April 2014 Published  June 2014

For Hamiltonian systems with spherical symmetry there is a marked difference between zero and non-zero momentum values, and amongst all relative equilibria with zero momentum there is a marked difference between those of zero and those of non-zero angular velocity. We use techniques from singularity theory to study the family of relative equilibria that arise as a symmetric Hamiltonian which has a group orbit of equilibria with zero momentum is perturbed so that the zero-momentum relative equilibrium are no longer equilibria. We also analyze the stability of these perturbed relative equilibria, and consider an application to satellites controlled by means of rotors.
Citation: James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237
References:
[1]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Springer, (1978). Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden & G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques,, Automatica, 28 (1992), 745. doi: 10.1016/0005-1098(92)90034-D. Google Scholar

[3]

J. W. Bruce & R. M. Roberts, Critical points of functions on analytic varieties,, Topology, 27 (1988), 57. doi: 10.1016/0040-9383(88)90007-9. Google Scholar

[4]

L. Buono, F. Laurent-Polz & J. Montaldi, Symmetric Hamiltonian Bifurcations,, In Geometric Mechanics and Symmetry: The Peyresq Lectures, (2005), 357. doi: 10.1017/CBO9780511526367.007. Google Scholar

[5]

J. Damon, The unfolding and determinacy theorems for subgroups of $\mathcalA$ and $\mathcalK$,, Memoirs A.M.S., 50 (1984). doi: 10.1090/memo/0306. Google Scholar

[6]

J. Damon, Deformations of sections of singularities and Gorenstein surface singularities,, Am. J. Math., 109 (1987), 695. doi: 10.2307/2374610. Google Scholar

[7]

J. Damon, $\mathcalA$-equivalence and the equivalence of sections of images and disriminants,, In Singularity Theory and its Applications, 1462 (1991), 93. doi: 10.1007/BFb0086377. Google Scholar

[8]

V. Guillemin, E. Lerman and S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511574788. Google Scholar

[9]

P. S. Krishnaprasad, Lie-Poisson structures, dual-spin spacecraft and asymptotic stability,, Nonlinear Anal., 9 (1985), 1011. doi: 10.1016/0362-546X(85)90083-5. Google Scholar

[10]

F. Laurent-Polz, J. Montaldi & M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, J. Geom. Mech, 3 (2012), 439. doi: 10.3934/jgm.2011.3.439. Google Scholar

[11]

E. Lerman & S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637. doi: 10.1088/0951-7715/11/6/012. Google Scholar

[12]

C. Lim, J. Montaldi & M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97. doi: 10.1016/S0167-2789(00)00167-6. Google Scholar

[13]

J. E. Marsden, Lecture Notes in Mechanics,, London Math. Soc. Lecture Notes, 174 (1992). doi: 10.1017/CBO9780511624001. Google Scholar

[14]

J. E. Marsden & J. Scheurle, The reduced Euler-Lagrange equations,, In Dynamics and Control of Mechanical Systems, 1 (1993), 139. Google Scholar

[15]

K. Meyer, G. Hall & D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem,, 2nd ed., (2009). Google Scholar

[16]

J. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449. doi: 10.1088/0951-7715/10/2/009. Google Scholar

[17]

J. Montaldi & M. Roberts, Relative equilibria of molecules,, J. Nonlinear Science, 9 (1999), 53. doi: 10.1007/s003329900064. Google Scholar

[18]

J. Montaldi & T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria,, Topology, 42 (2003), 833. doi: 10.1016/S0040-9383(02)00047-2. Google Scholar

[19]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, vol. 222 of Progress in Mathematics, (2004). doi: 10.1007/978-1-4757-3811-7. Google Scholar

[20]

G. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111. doi: 10.1016/0393-0440(92)90015-S. Google Scholar

[21]

G. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift,, J. Nonlinear Sci., 5 (1995), 373. doi: 10.1007/BF01212907. Google Scholar

[22]

G. Patrick, Dynamics near relative equilibria: Nongeneric momenta at a 1:1 group-reduced resonance,, Math. Z., 232 (1999), 747. doi: 10.1007/PL00004782. Google Scholar

[23]

G. Patrick & M. Roberts, The transversal relative equilibria of a Hamiltonian system with symmetry,, Nonlinearity, 13 (2000), 2089. doi: 10.1088/0951-7715/13/6/311. Google Scholar

show all references

References:
[1]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Springer, (1978). Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden & G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques,, Automatica, 28 (1992), 745. doi: 10.1016/0005-1098(92)90034-D. Google Scholar

[3]

J. W. Bruce & R. M. Roberts, Critical points of functions on analytic varieties,, Topology, 27 (1988), 57. doi: 10.1016/0040-9383(88)90007-9. Google Scholar

[4]

L. Buono, F. Laurent-Polz & J. Montaldi, Symmetric Hamiltonian Bifurcations,, In Geometric Mechanics and Symmetry: The Peyresq Lectures, (2005), 357. doi: 10.1017/CBO9780511526367.007. Google Scholar

[5]

J. Damon, The unfolding and determinacy theorems for subgroups of $\mathcalA$ and $\mathcalK$,, Memoirs A.M.S., 50 (1984). doi: 10.1090/memo/0306. Google Scholar

[6]

J. Damon, Deformations of sections of singularities and Gorenstein surface singularities,, Am. J. Math., 109 (1987), 695. doi: 10.2307/2374610. Google Scholar

[7]

J. Damon, $\mathcalA$-equivalence and the equivalence of sections of images and disriminants,, In Singularity Theory and its Applications, 1462 (1991), 93. doi: 10.1007/BFb0086377. Google Scholar

[8]

V. Guillemin, E. Lerman and S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511574788. Google Scholar

[9]

P. S. Krishnaprasad, Lie-Poisson structures, dual-spin spacecraft and asymptotic stability,, Nonlinear Anal., 9 (1985), 1011. doi: 10.1016/0362-546X(85)90083-5. Google Scholar

[10]

F. Laurent-Polz, J. Montaldi & M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, J. Geom. Mech, 3 (2012), 439. doi: 10.3934/jgm.2011.3.439. Google Scholar

[11]

E. Lerman & S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637. doi: 10.1088/0951-7715/11/6/012. Google Scholar

[12]

C. Lim, J. Montaldi & M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97. doi: 10.1016/S0167-2789(00)00167-6. Google Scholar

[13]

J. E. Marsden, Lecture Notes in Mechanics,, London Math. Soc. Lecture Notes, 174 (1992). doi: 10.1017/CBO9780511624001. Google Scholar

[14]

J. E. Marsden & J. Scheurle, The reduced Euler-Lagrange equations,, In Dynamics and Control of Mechanical Systems, 1 (1993), 139. Google Scholar

[15]

K. Meyer, G. Hall & D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem,, 2nd ed., (2009). Google Scholar

[16]

J. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449. doi: 10.1088/0951-7715/10/2/009. Google Scholar

[17]

J. Montaldi & M. Roberts, Relative equilibria of molecules,, J. Nonlinear Science, 9 (1999), 53. doi: 10.1007/s003329900064. Google Scholar

[18]

J. Montaldi & T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria,, Topology, 42 (2003), 833. doi: 10.1016/S0040-9383(02)00047-2. Google Scholar

[19]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, vol. 222 of Progress in Mathematics, (2004). doi: 10.1007/978-1-4757-3811-7. Google Scholar

[20]

G. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111. doi: 10.1016/0393-0440(92)90015-S. Google Scholar

[21]

G. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift,, J. Nonlinear Sci., 5 (1995), 373. doi: 10.1007/BF01212907. Google Scholar

[22]

G. Patrick, Dynamics near relative equilibria: Nongeneric momenta at a 1:1 group-reduced resonance,, Math. Z., 232 (1999), 747. doi: 10.1007/PL00004782. Google Scholar

[23]

G. Patrick & M. Roberts, The transversal relative equilibria of a Hamiltonian system with symmetry,, Nonlinearity, 13 (2000), 2089. doi: 10.1088/0951-7715/13/6/311. Google Scholar

[1]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[2]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[3]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[4]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[5]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[6]

Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003

[7]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[8]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[9]

Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020067

[10]

Fengjie Geng, Junfang Zhao, Deming Zhu, Weipeng Zhang. Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 133-145. doi: 10.3934/dcdsb.2013.18.133

[11]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[12]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[13]

Florian Rupp, Jürgen Scheurle. Classification of a class of relative equilibria in three body coulomb systems. Conference Publications, 2011, 2011 (Special) : 1254-1262. doi: 10.3934/proc.2011.2011.1254

[14]

Partha Sharathi Dutta, Soumitro Banerjee. Period increment cascades in a discontinuous map with square-root singularity. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 961-976. doi: 10.3934/dcdsb.2010.14.961

[15]

Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161

[16]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[17]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[18]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[19]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[20]

Laura Gardini, Roya Makrooni, Iryna Sushko. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 701-729. doi: 10.3934/dcdsb.2018039

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]