June  2014, 6(2): 167-236. doi: 10.3934/jgm.2014.6.167

An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems

1. 

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET

2. 

Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 172, 1900 La Plata, Argentina

3. 

Departamento de Mateemática and Instituto de Matemática Bahía Blanca, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET, Argentina

Received  March 2011 Revised  May 2014 Published  June 2014

This paper extends the Gotay-Nester and the Dirac theories of constrained systems in order to deal with Dirac dynamical systems in the integrable case. Integrable Dirac dynamical systems are viewed as constrained systems where the constraint submanifolds are foliated. The cases considered usually in the literature correspond to a trivial foliation, with only one leaf. A Constraint Algorithm for Dirac dynamical systems (CAD), which extends the Gotay-Nester algorithm, is developed. Evolution equations are written using a Dirac bracket adapted to the foliations and an adapted total energy. The interesting example of LC circuits is developed in detail. The paper emphasizes the point of view that Dirac and Gotay-Nester theories are, in a certain sense, dual and that using a combination of results from both theories may have advantages in dealing with a given example, rather than using systematically one or the other.
Citation: Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, (1978), 0. Google Scholar

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics., Springer-Verlag, (1989), 0. doi: 10.1007/978-1-4757-2063-1. Google Scholar

[3]

P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1. doi: 10.3934/jgm.2009.1.1. Google Scholar

[4]

M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems,, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221. doi: 10.1142/S0219887809004193. Google Scholar

[5]

J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory,, J. Math. Phys., 35 (1994), 3497. doi: 10.1063/1.530425. Google Scholar

[6]

C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems,, J. Math. Phys., 27 (1986), 2953. doi: 10.1063/1.527274. Google Scholar

[7]

C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints,, Lett. Math. Phys., 13 (1987), 17. doi: 10.1007/BF00570763. Google Scholar

[8]

K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1988). Google Scholar

[9]

G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems,, Rep. Math. Phys., 53 (2004), 211. doi: 10.1016/S0034-4877(04)90013-4. Google Scholar

[10]

G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures,, Course at Summer School and Conference on Poisson Geometry, (2005). Google Scholar

[11]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer-Verlag, (2003), 0. doi: 10.1007/b97376. Google Scholar

[12]

A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits,, In Differential geometry and control (Boulder, 64 (1999), 103. doi: 10.1090/pspum/064/1654513. Google Scholar

[13]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21. doi: 10.1007/BF02199365. Google Scholar

[14]

A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics,, Regul. Chaotic Dyn., 7 (2002), 43. doi: 10.1070/RD2002v007n01ABEH000194. Google Scholar

[15]

H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange,, Conference at IHES, (2010). Google Scholar

[16]

H. Bursztyn, A brief introduction to Dirac manifolds,, Preprint, (2011). Google Scholar

[17]

H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps,, J. Differential Geom., 82 (2009), 501. Google Scholar

[18]

F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353. doi: 10.1016/0393-0440(86)90014-8. Google Scholar

[19]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961. doi: 10.1063/1.526864. Google Scholar

[20]

J. F. Cariñena, Theory of singular Lagrangians,, Fortschr. Phys., 38 (1990), 641. doi: 10.1002/prop.2190380902. Google Scholar

[21]

J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians,, J. Math. Phys., 25 (1984), 2430. doi: 10.1063/1.526450. Google Scholar

[22]

J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers,, J. Phys. A, 26 (1993), 1335. doi: 10.1088/0305-4470/26/6/016. Google Scholar

[23]

J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints,, J. Phys. A, 28 (1995), 0305. doi: 10.1088/0305-4470/28/3/006. Google Scholar

[24]

J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation,, J. Math. Phys., 29 (1988), 1143. doi: 10.1063/1.527955. Google Scholar

[25]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975. doi: 10.1088/0305-4470/39/35/003. Google Scholar

[26]

H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry,, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95. Google Scholar

[27]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, In Mathematics unlimited-2001 and beyond, (2001), 221. Google Scholar

[28]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001), 0065. doi: 10.1090/memo/0722. Google Scholar

[29]

H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Mosc. Math. J., 3 (2003), 833. Google Scholar

[30]

H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245. Google Scholar

[31]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry,, Preprint, (2011). Google Scholar

[32]

M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints,, Ann. Physics, 232 (1994), 40. doi: 10.1006/aphy.1994.1049. Google Scholar

[33]

D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians,, J. Math. Phys., 35 (1994), 3410. doi: 10.1063/1.530476. Google Scholar

[34]

L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277. Google Scholar

[35]

L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1989), 0. Google Scholar

[36]

J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics,, Springer-Verlag, (2002), 3. Google Scholar

[37]

J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509. doi: 10.1142/S0219887806001211. Google Scholar

[38]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete Contin. Dyn. Syst., 24 (2009), 213. doi: 10.3934/dcds.2009.24.213. Google Scholar

[39]

T. Courant and A. Weinstein, Beyond Poisson structures,, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, (1986), 39. Google Scholar

[40]

T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1. Google Scholar

[41]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897. doi: 10.1142/S0219887811005452. Google Scholar

[42]

M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames,, J. Geom. Mech., 3 (2011), 23. doi: 10.3934/jgm.2011.3.23. Google Scholar

[43]

M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism,, Differential Geom. Appl., 6 (1996), 275. doi: 10.1016/0926-2245(96)82423-5. Google Scholar

[44]

M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105. doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. Google Scholar

[45]

M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,, J. Math. Phys., 34 (1993), 622. doi: 10.1063/1.530264. Google Scholar

[46]

M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets,, J. Phys. A, 29 (1996), 6843. doi: 10.1088/0305-4470/29/21/016. Google Scholar

[47]

M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems,, J. Math. Phys., 54 (2013), 0022. doi: 10.1063/1.4796088. Google Scholar

[48]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, 38 (2005), 0305. doi: 10.1088/0305-4470/38/24/R01. Google Scholar

[49]

M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389. doi: 10.1063/1.531571. Google Scholar

[50]

M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures,, J. Phys. A, 28 (1995), 4951. doi: 10.1088/0305-4470/28/17/025. Google Scholar

[51]

M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting,, Int. J. Geom. Methods Mod. Phys., 9 (2012), 0219. doi: 10.1142/S0219887812500740. Google Scholar

[52]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1989), 0. Google Scholar

[53]

M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions,, Discrete Contin. Dyn. Syst., (2003), 223. Google Scholar

[54]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Math., 2 (1950), 129. doi: 10.4153/CJM-1950-012-1. Google Scholar

[55]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326. doi: 10.1098/rspa.1958.0141. Google Scholar

[56]

P. A. M. Dirac, Lectures on quantum mechanics,, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, (1967). Google Scholar

[57]

M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints,, J. Phys. A, 16 (1983), 0305. doi: 10.1088/0305-4470/16/5/003. Google Scholar

[58]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129. Google Scholar

[59]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1. Google Scholar

[60]

M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds,, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., (1979), 78. Google Scholar

[61]

M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints,, J. Phys. A, 17 (1984), 3063. doi: 10.1088/0305-4470/17/15/023. Google Scholar

[62]

M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings,, Comm. Math. Phys., 82 (): 377. doi: 10.1007/BF01237045. Google Scholar

[63]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388. doi: 10.1063/1.523597. Google Scholar

[64]

J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint,, J. Math. Phys., 50 (2009), 0022. doi: 10.1063/1.3049752. Google Scholar

[65]

X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach,, Internat. J. Theoret. Phys., 30 (1991), 511. doi: 10.1007/BF00672895. Google Scholar

[66]

X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems,, Differential Geom. Appl., 2 (1992), 223. doi: 10.1016/0926-2245(92)90012-C. Google Scholar

[67]

E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds,, J. Phys. A, 43 (2010). doi: 10.1088/1751-8113/43/50/505201. Google Scholar

[68]

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems,, Princeton University Press, (1992), 0. Google Scholar

[69]

D. D. Holm, Geometric Mechanics. Part I,, Dynamics and symmetry. Imperial College Press, (2011), 978. Google Scholar

[70]

D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling,, Imperial College Press, (2011), 978. doi: 10.1142/p802. Google Scholar

[71]

A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295. Google Scholar

[72]

A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics,, Fortschr. Phys., 47 (1999), 459. doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E. Google Scholar

[73]

A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians,, J. Math. Phys., 36 (1995), 5522. doi: 10.1063/1.531275. Google Scholar

[74]

D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 1815. doi: 10.3842/SIGMA.2007.049. Google Scholar

[75]

D. Krupka, The structure of the Euler-Lagrange mapping,, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52. doi: 10.3103/S1066369X07120043. Google Scholar

[76]

O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints,, J. Math. Phys., 35 (1994), 6557. doi: 10.1063/1.530691. Google Scholar

[77]

O. Krupková, A new look at Dirac's theory of constrained systems,, In Gravity, (1996), 507. doi: 10.1142/9789812830180_0024. Google Scholar

[78]

G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics,, Proc. Roy. Soc. Edinburgh, 39 (1919). Google Scholar

[79]

L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints,, Riv. Nuovo Cimento (3), 14 (1991), 1. doi: 10.1007/BF02810161. Google Scholar

[80]

L. Lusanna, Hamiltonian constraints and Dirac observables,, In Geometry of constrained dynamical systems (Cambridge, (1994), 117. doi: 10.1017/CBO9780511895722.014. Google Scholar

[81]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A, 30 (1997), 277. doi: 10.1088/0305-4470/30/1/020. Google Scholar

[82]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, volume 17 of Texts in Applied Mathematics. Springer-Verlag, (1994). Google Scholar

[83]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007). doi: 10.3842/SIGMA.2007.050. Google Scholar

[84]

E. Martínez, Variational calculus on Lie algebroids,, ESAIM Control Optim. Calc. Var., 14 (2008), 356. doi: 10.1051/cocv:2007056. Google Scholar

[85]

B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess,, Memorandum 1426, (1426). Google Scholar

[86]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators,, J. Franklin Inst., 329 (1992), 923. doi: 10.1016/S0016-0032(92)90049-M. Google Scholar

[87]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73. doi: 10.1109/81.372847. Google Scholar

[88]

G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A, 28 (1995), 149. doi: 10.1088/0305-4470/28/1/018. Google Scholar

[89]

L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits,, SIAM Rev., 46 (2004), 59. doi: 10.1137/S0036144502409020. Google Scholar

[90]

N. Mukunda, Time-dependent constraints in classical dynamics,, Phys. Scripta, 21 (1980), 801. doi: 10.1088/0031-8949/21/6/004. Google Scholar

[91]

N. Mukunda, The life and work of P. A. M. Dirac,, In Recent developments in theoretical physics (Kottayam, (1986), 260. Google Scholar

[92]

Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar

[93]

N. Nikolaev, Reduction Theory and Dirac Geometry,, Master's thesis, (2011). Google Scholar

[94]

F. L. Pritchard, On implicit systems of differential equations,, J. Differential Equations, 194 (2003), 328. doi: 10.1016/S0022-0396(03)00191-8. Google Scholar

[95]

P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110. doi: 10.1006/jdeq.1994.1046. Google Scholar

[96]

K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems,, Ann. Physics, 308 (2003), 639. doi: 10.1016/j.aop.2003.08.005. Google Scholar

[97]

R. Skinner, First-order equations of motion for classical mechanics,, J. Math. Phys., 24 (1983), 2581. doi: 10.1063/1.525653. Google Scholar

[98]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$,, J. Math. Phys., 24 (1983), 2589. doi: 10.1063/1.525654. Google Scholar

[99]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations,, J. Math. Phys., 24 (1983), 2595. doi: 10.1063/1.525655. Google Scholar

[100]

S. Smale, On the mathematical foundations of electrical circuit theory,, J. Differential Geometry, 7 (1972), 193. Google Scholar

[101]

J. Śniatycki, Dirac brackets in geometric dynamics,, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365. Google Scholar

[102]

E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,, Wiley-Interscience [John Wiley & Sons], (1974). Google Scholar

[103]

K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics,, Springer-Verlag, (1982). Google Scholar

[104]

Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations,, Acta Appl. Math., 112 (2010), 225. doi: 10.1007/s10440-010-9561-y. Google Scholar

[105]

A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints,, J. Phys. A, 20 (1987), 3271. doi: 10.1088/0305-4470/20/11/030. Google Scholar

[106]

A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203. doi: 10.1016/S0034-4877(98)80176-6. Google Scholar

[107]

A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225. doi: 10.1016/0034-4877(94)90038-8. Google Scholar

[108]

A. Weinstein, The local structure of Poisson manifolds,, J. Differential Geom., 18 (1983), 523. Google Scholar

[109]

A. Weinstein., Lagrangian mechanics and groupoids., In Mechanics day (Waterloo, (1992), 207. Google Scholar

[110]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems,, J. Geom. Phys., 57 (2006), 133. doi: 10.1016/j.geomphys.2006.02.009. Google Scholar

[111]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures,, J. Geom. Phys., 57 (2006), 209. doi: 10.1016/j.geomphys.2006.02.012. Google Scholar

[112]

D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems,, Dynam. Stability Systems, 13 (1998), 123. doi: 10.1080/02681119808806257. Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, (1978), 0. Google Scholar

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics., Springer-Verlag, (1989), 0. doi: 10.1007/978-1-4757-2063-1. Google Scholar

[3]

P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1. doi: 10.3934/jgm.2009.1.1. Google Scholar

[4]

M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems,, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221. doi: 10.1142/S0219887809004193. Google Scholar

[5]

J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory,, J. Math. Phys., 35 (1994), 3497. doi: 10.1063/1.530425. Google Scholar

[6]

C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems,, J. Math. Phys., 27 (1986), 2953. doi: 10.1063/1.527274. Google Scholar

[7]

C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints,, Lett. Math. Phys., 13 (1987), 17. doi: 10.1007/BF00570763. Google Scholar

[8]

K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1988). Google Scholar

[9]

G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems,, Rep. Math. Phys., 53 (2004), 211. doi: 10.1016/S0034-4877(04)90013-4. Google Scholar

[10]

G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures,, Course at Summer School and Conference on Poisson Geometry, (2005). Google Scholar

[11]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer-Verlag, (2003), 0. doi: 10.1007/b97376. Google Scholar

[12]

A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits,, In Differential geometry and control (Boulder, 64 (1999), 103. doi: 10.1090/pspum/064/1654513. Google Scholar

[13]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21. doi: 10.1007/BF02199365. Google Scholar

[14]

A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics,, Regul. Chaotic Dyn., 7 (2002), 43. doi: 10.1070/RD2002v007n01ABEH000194. Google Scholar

[15]

H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange,, Conference at IHES, (2010). Google Scholar

[16]

H. Bursztyn, A brief introduction to Dirac manifolds,, Preprint, (2011). Google Scholar

[17]

H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps,, J. Differential Geom., 82 (2009), 501. Google Scholar

[18]

F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353. doi: 10.1016/0393-0440(86)90014-8. Google Scholar

[19]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961. doi: 10.1063/1.526864. Google Scholar

[20]

J. F. Cariñena, Theory of singular Lagrangians,, Fortschr. Phys., 38 (1990), 641. doi: 10.1002/prop.2190380902. Google Scholar

[21]

J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians,, J. Math. Phys., 25 (1984), 2430. doi: 10.1063/1.526450. Google Scholar

[22]

J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers,, J. Phys. A, 26 (1993), 1335. doi: 10.1088/0305-4470/26/6/016. Google Scholar

[23]

J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints,, J. Phys. A, 28 (1995), 0305. doi: 10.1088/0305-4470/28/3/006. Google Scholar

[24]

J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation,, J. Math. Phys., 29 (1988), 1143. doi: 10.1063/1.527955. Google Scholar

[25]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975. doi: 10.1088/0305-4470/39/35/003. Google Scholar

[26]

H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry,, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95. Google Scholar

[27]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, In Mathematics unlimited-2001 and beyond, (2001), 221. Google Scholar

[28]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001), 0065. doi: 10.1090/memo/0722. Google Scholar

[29]

H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Mosc. Math. J., 3 (2003), 833. Google Scholar

[30]

H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245. Google Scholar

[31]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry,, Preprint, (2011). Google Scholar

[32]

M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints,, Ann. Physics, 232 (1994), 40. doi: 10.1006/aphy.1994.1049. Google Scholar

[33]

D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians,, J. Math. Phys., 35 (1994), 3410. doi: 10.1063/1.530476. Google Scholar

[34]

L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277. Google Scholar

[35]

L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1989), 0. Google Scholar

[36]

J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics,, Springer-Verlag, (2002), 3. Google Scholar

[37]

J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509. doi: 10.1142/S0219887806001211. Google Scholar

[38]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete Contin. Dyn. Syst., 24 (2009), 213. doi: 10.3934/dcds.2009.24.213. Google Scholar

[39]

T. Courant and A. Weinstein, Beyond Poisson structures,, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, (1986), 39. Google Scholar

[40]

T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1. Google Scholar

[41]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897. doi: 10.1142/S0219887811005452. Google Scholar

[42]

M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames,, J. Geom. Mech., 3 (2011), 23. doi: 10.3934/jgm.2011.3.23. Google Scholar

[43]

M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism,, Differential Geom. Appl., 6 (1996), 275. doi: 10.1016/0926-2245(96)82423-5. Google Scholar

[44]

M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105. doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. Google Scholar

[45]

M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,, J. Math. Phys., 34 (1993), 622. doi: 10.1063/1.530264. Google Scholar

[46]

M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets,, J. Phys. A, 29 (1996), 6843. doi: 10.1088/0305-4470/29/21/016. Google Scholar

[47]

M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems,, J. Math. Phys., 54 (2013), 0022. doi: 10.1063/1.4796088. Google Scholar

[48]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, 38 (2005), 0305. doi: 10.1088/0305-4470/38/24/R01. Google Scholar

[49]

M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389. doi: 10.1063/1.531571. Google Scholar

[50]

M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures,, J. Phys. A, 28 (1995), 4951. doi: 10.1088/0305-4470/28/17/025. Google Scholar

[51]

M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting,, Int. J. Geom. Methods Mod. Phys., 9 (2012), 0219. doi: 10.1142/S0219887812500740. Google Scholar

[52]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1989), 0. Google Scholar

[53]

M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions,, Discrete Contin. Dyn. Syst., (2003), 223. Google Scholar

[54]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Math., 2 (1950), 129. doi: 10.4153/CJM-1950-012-1. Google Scholar

[55]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326. doi: 10.1098/rspa.1958.0141. Google Scholar

[56]

P. A. M. Dirac, Lectures on quantum mechanics,, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, (1967). Google Scholar

[57]

M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints,, J. Phys. A, 16 (1983), 0305. doi: 10.1088/0305-4470/16/5/003. Google Scholar

[58]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129. Google Scholar

[59]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1. Google Scholar

[60]

M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds,, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., (1979), 78. Google Scholar

[61]

M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints,, J. Phys. A, 17 (1984), 3063. doi: 10.1088/0305-4470/17/15/023. Google Scholar

[62]

M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings,, Comm. Math. Phys., 82 (): 377. doi: 10.1007/BF01237045. Google Scholar

[63]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388. doi: 10.1063/1.523597. Google Scholar

[64]

J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint,, J. Math. Phys., 50 (2009), 0022. doi: 10.1063/1.3049752. Google Scholar

[65]

X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach,, Internat. J. Theoret. Phys., 30 (1991), 511. doi: 10.1007/BF00672895. Google Scholar

[66]

X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems,, Differential Geom. Appl., 2 (1992), 223. doi: 10.1016/0926-2245(92)90012-C. Google Scholar

[67]

E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds,, J. Phys. A, 43 (2010). doi: 10.1088/1751-8113/43/50/505201. Google Scholar

[68]

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems,, Princeton University Press, (1992), 0. Google Scholar

[69]

D. D. Holm, Geometric Mechanics. Part I,, Dynamics and symmetry. Imperial College Press, (2011), 978. Google Scholar

[70]

D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling,, Imperial College Press, (2011), 978. doi: 10.1142/p802. Google Scholar

[71]

A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295. Google Scholar

[72]

A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics,, Fortschr. Phys., 47 (1999), 459. doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E. Google Scholar

[73]

A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians,, J. Math. Phys., 36 (1995), 5522. doi: 10.1063/1.531275. Google Scholar

[74]

D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 1815. doi: 10.3842/SIGMA.2007.049. Google Scholar

[75]

D. Krupka, The structure of the Euler-Lagrange mapping,, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52. doi: 10.3103/S1066369X07120043. Google Scholar

[76]

O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints,, J. Math. Phys., 35 (1994), 6557. doi: 10.1063/1.530691. Google Scholar

[77]

O. Krupková, A new look at Dirac's theory of constrained systems,, In Gravity, (1996), 507. doi: 10.1142/9789812830180_0024. Google Scholar

[78]

G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics,, Proc. Roy. Soc. Edinburgh, 39 (1919). Google Scholar

[79]

L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints,, Riv. Nuovo Cimento (3), 14 (1991), 1. doi: 10.1007/BF02810161. Google Scholar

[80]

L. Lusanna, Hamiltonian constraints and Dirac observables,, In Geometry of constrained dynamical systems (Cambridge, (1994), 117. doi: 10.1017/CBO9780511895722.014. Google Scholar

[81]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A, 30 (1997), 277. doi: 10.1088/0305-4470/30/1/020. Google Scholar

[82]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, volume 17 of Texts in Applied Mathematics. Springer-Verlag, (1994). Google Scholar

[83]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007). doi: 10.3842/SIGMA.2007.050. Google Scholar

[84]

E. Martínez, Variational calculus on Lie algebroids,, ESAIM Control Optim. Calc. Var., 14 (2008), 356. doi: 10.1051/cocv:2007056. Google Scholar

[85]

B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess,, Memorandum 1426, (1426). Google Scholar

[86]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators,, J. Franklin Inst., 329 (1992), 923. doi: 10.1016/S0016-0032(92)90049-M. Google Scholar

[87]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73. doi: 10.1109/81.372847. Google Scholar

[88]

G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A, 28 (1995), 149. doi: 10.1088/0305-4470/28/1/018. Google Scholar

[89]

L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits,, SIAM Rev., 46 (2004), 59. doi: 10.1137/S0036144502409020. Google Scholar

[90]

N. Mukunda, Time-dependent constraints in classical dynamics,, Phys. Scripta, 21 (1980), 801. doi: 10.1088/0031-8949/21/6/004. Google Scholar

[91]

N. Mukunda, The life and work of P. A. M. Dirac,, In Recent developments in theoretical physics (Kottayam, (1986), 260. Google Scholar

[92]

Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar

[93]

N. Nikolaev, Reduction Theory and Dirac Geometry,, Master's thesis, (2011). Google Scholar

[94]

F. L. Pritchard, On implicit systems of differential equations,, J. Differential Equations, 194 (2003), 328. doi: 10.1016/S0022-0396(03)00191-8. Google Scholar

[95]

P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110. doi: 10.1006/jdeq.1994.1046. Google Scholar

[96]

K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems,, Ann. Physics, 308 (2003), 639. doi: 10.1016/j.aop.2003.08.005. Google Scholar

[97]

R. Skinner, First-order equations of motion for classical mechanics,, J. Math. Phys., 24 (1983), 2581. doi: 10.1063/1.525653. Google Scholar

[98]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$,, J. Math. Phys., 24 (1983), 2589. doi: 10.1063/1.525654. Google Scholar

[99]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations,, J. Math. Phys., 24 (1983), 2595. doi: 10.1063/1.525655. Google Scholar

[100]

S. Smale, On the mathematical foundations of electrical circuit theory,, J. Differential Geometry, 7 (1972), 193. Google Scholar

[101]

J. Śniatycki, Dirac brackets in geometric dynamics,, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365. Google Scholar

[102]

E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,, Wiley-Interscience [John Wiley & Sons], (1974). Google Scholar

[103]

K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics,, Springer-Verlag, (1982). Google Scholar

[104]

Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations,, Acta Appl. Math., 112 (2010), 225. doi: 10.1007/s10440-010-9561-y. Google Scholar

[105]

A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints,, J. Phys. A, 20 (1987), 3271. doi: 10.1088/0305-4470/20/11/030. Google Scholar

[106]

A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203. doi: 10.1016/S0034-4877(98)80176-6. Google Scholar

[107]

A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225. doi: 10.1016/0034-4877(94)90038-8. Google Scholar

[108]

A. Weinstein, The local structure of Poisson manifolds,, J. Differential Geom., 18 (1983), 523. Google Scholar

[109]

A. Weinstein., Lagrangian mechanics and groupoids., In Mechanics day (Waterloo, (1992), 207. Google Scholar

[110]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems,, J. Geom. Phys., 57 (2006), 133. doi: 10.1016/j.geomphys.2006.02.009. Google Scholar

[111]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures,, J. Geom. Phys., 57 (2006), 209. doi: 10.1016/j.geomphys.2006.02.012. Google Scholar

[112]

D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems,, Dynam. Stability Systems, 13 (1998), 123. doi: 10.1080/02681119808806257. Google Scholar

[1]

Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417

[2]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[3]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[4]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[5]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[6]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[7]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[8]

Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[9]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[10]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[11]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[12]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[13]

Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169

[14]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[15]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[16]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[17]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[18]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[19]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[20]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]