# American Institute of Mathematical Sciences

September  2013, 5(3): 295-318. doi: 10.3934/jgm.2013.5.295

## Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation

 1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China, China, China

Received  January 2013 Revised  July 2013 Published  September 2013

The soliton interactions, especially the soliton resonance phenomena of the (2+1)-dimensional Boussinesq equation have been investigated numerically in this paper. Based on the Bridges's multi-symplectic idea, the multi-symplectic formulations with several conservation laws for the (2+1)-dimensional Boussinesq equation are presented firstly. Then, a forty-five points implicit multi-symplectic scheme is constructed. Finally, according to the soliton resonance condition, numerical experiments on the two-soliton solution of the (2+1)-dimensional Boussinesq equation for simulating the soliton interaction phenomena, especially the soliton resonance are reported. From the results of the numerical experiments, it can be concluded that the multi-symplectic scheme can simulate the soliton resonance phenomena perfectly, which can be used to make further investigation on the interaction and the energy distribution of gravity waves, and evaluate the impact on the ship traffic on the surface of water.
Citation: Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295
##### References:

show all references

##### References:
 [1] Justin Holmer, Maciej Zworski. Slow soliton interaction with delta impurities. Journal of Modern Dynamics, 2007, 1 (4) : 689-718. doi: 10.3934/jmd.2007.1.689 [2] John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149 [3] Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034 [4] Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013 [5] Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 [6] Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 [7] Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56. [8] Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579 [9] Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049 [10] Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 [11] Arno Berger. Multi-dimensional dynamical systems and Benford's Law. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 219-237. doi: 10.3934/dcds.2005.13.219 [12] Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419 [13] Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 [14] Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 [15] W. Josh Sonnier, C. I. Christov. Repelling soliton collisions in coupled Schrödinger equations with negative cross modulation. Conference Publications, 2009, 2009 (Special) : 708-718. doi: 10.3934/proc.2009.2009.708 [16] Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 [17] Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205 [18] Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052 [19] Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981 [20] Toshiyuki Ogawa, Takashi Okuda. Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks & Heterogeneous Media, 2012, 7 (4) : 893-926. doi: 10.3934/nhm.2012.7.893

2018 Impact Factor: 0.525