• Previous Article
    Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation
  • JGM Home
  • This Issue
  • Next Article
    A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces
September  2013, 5(3): 281-294. doi: 10.3934/jgm.2013.5.281

Smooth perfectness for the group of diffeomorphisms

1. 

Department of Mathematics, University of Vienna, Nordbergstraße 15, A-1090, Vienna, Austria

2. 

Faculty of applied mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

3. 

Department of Mathematics, ETH Zürich, Rämistrasse 10, 8092 Zürich, Switzerland

Received  March 2013 Published  September 2013

Given a result of Herman, we provide a new elementary proof of the fact that the connected component of the identity in the group of compactly supported diffeomorphisms is perfect and hence simple. Moreover, we show that every diffeomorphism $g$, which is sufficiently close to the identity, can be represented as a product of four commutators, $g=[h_1,k_1]\circ\cdots\circ[h_4,k_4]$, where the factors $h_i$ can be chosen to depend smoothly on $g$, and $k_i=\exp(X_i)$ are flows at time one of complete vector fields $X_i$ which are independent of $g$.
Citation: Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281
References:
[1]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,, Commentarii Mathematici Helvetici, 53 (1978), 174. doi: 10.1007/BF02566074. Google Scholar

[2]

A. Banyaga, "The Structure of Classical Diffeomorphism Groups,", Kluwer Academic Publishers Group, (1997). Google Scholar

[3]

D. Burago, S. Ivanov and L. Polterovich, Conjugation-invariant norms on groups of geometric origin,, Groups of diffeomorphisms, 52 (2008), 221. Google Scholar

[4]

R. D. Edwards and R. C. Kirby, Deformations of spaces of imbeddings,, Annals of Mathematics, 93 (1971), 63. doi: 10.2307/1970753. Google Scholar

[5]

D. B. A. Epstein, The simplicity of certain groups of homeomorphisms,, Compositio Math., 22 (1970), 165. Google Scholar

[6]

D. B. A. Epstein, Commutators of $C^\infty$-diffeomorphisms. Appendix to: "A curious remark concerning the geometric transfer map'' by John N. Mather,, Commentarii Mathematici Helvetici, 59 (1984), 111. doi: 10.1007/BF02566339. Google Scholar

[7]

S. Haller and J. Teichmann, Smooth perfectness through decomposition of diffeomorphisms into fiber preserving ones,, Annals of Global Analysis and Geometry, 23 (2003), 53. doi: 10.1023/A:1021280213742. Google Scholar

[8]

M. R. Herman, Simplicité du groupe des difféomorphismes de classe $C^\infty$, isotopes à l'identité, du tore de dimension n,, C. R. Acad. Sci. Paris Sr. A, 273 (1971), 232. Google Scholar

[9]

M. R. Herman, Sur le groupe des difféomorphismes du tore,, Annales de L'Institut Fourier (Grenoble), 23 (1973), 75. doi: 10.5802/aif.457. Google Scholar

[10]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics 33, 33 (1976). Google Scholar

[11]

A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis,", Mathematical Surveys and Monographs 53, 53 (1997). Google Scholar

[12]

J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms,, Topology, 10 (1071), 297. Google Scholar

[13]

J. N. Mather, Commutators of diffeomorphisms,, Comment. Math. Helv., 49 (1974), 512. Google Scholar

[14]

J. N. Mather, Commutators of diffeomorphisms. II,, Comment. Math. Helv., 50 (1975), 33. Google Scholar

[15]

J. N. Mather, A curious remark concerning the geometric transfer map,, Commentarii Mathematici Helvetici, 59 (1984), 86. doi: 10.1007/BF02566338. Google Scholar

[16]

J. Milnor, "Morse Theory,", Annals of Mathematics Studies 51, 51 (1963). Google Scholar

[17]

S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory,, Dokl. Akad. Nauk SSSR, 260 (1981), 31. Google Scholar

[18]

A. V. Pajitnov, "Circle-valued Morse Theory,", de Gruyter Studies in Mathematics 32, 32 (2006). doi: 10.1515/9783110197976. Google Scholar

[19]

T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect,, Monatshefte fr Mathematik, 120 (1995), 289. doi: 10.1007/BF01294862. Google Scholar

[20]

T. Rybicki, Commutators of contactomorphisms,, Advances in Mathematics, 225 (2010), 3291. doi: 10.1016/j.aim.2010.06.004. Google Scholar

[21]

T. Rybicki, Locally continuously perfect groups of homeomorphisms,, Annals of Global Analysis and Geometry, 40 (2011), 191. doi: 10.1007/s10455-011-9253-5. Google Scholar

[22]

W. Thurston, Foliations and groups of diffeomorphisms,, Bulletin of the American Mathematical Society, 80 (1974), 304. doi: 10.1090/S0002-9904-1974-13475-0. Google Scholar

[23]

T. Tsuboi, On $2$-cycles of B Diff$(S^1)$ which are represented by foliated $S^1$-bundles over $T^2$,, Ann. Inst. Fourier, 31 (1981), 1. Google Scholar

[24]

T. Tsuboi, On the uniform perfectness of diffeomorphism groups,, Groups of diffeomorphisms, 52 (2008), 505. Google Scholar

[25]

T. Tsuboi, On the uniform simplicity of diffeomorphism groups,, Differential geometry, (2009), 43. doi: 10.1142/9789814261173_0004. Google Scholar

[26]

T. Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of even-dimensional manifolds,, Commentarii Mathematici Helvetici, 87 (2012), 141. doi: 10.4171/CMH/251. Google Scholar

[27]

J.-C. Yoccoz, Petits diviseurs en dimension $1$,, Astérisque, 231 (1995). Google Scholar

show all references

References:
[1]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,, Commentarii Mathematici Helvetici, 53 (1978), 174. doi: 10.1007/BF02566074. Google Scholar

[2]

A. Banyaga, "The Structure of Classical Diffeomorphism Groups,", Kluwer Academic Publishers Group, (1997). Google Scholar

[3]

D. Burago, S. Ivanov and L. Polterovich, Conjugation-invariant norms on groups of geometric origin,, Groups of diffeomorphisms, 52 (2008), 221. Google Scholar

[4]

R. D. Edwards and R. C. Kirby, Deformations of spaces of imbeddings,, Annals of Mathematics, 93 (1971), 63. doi: 10.2307/1970753. Google Scholar

[5]

D. B. A. Epstein, The simplicity of certain groups of homeomorphisms,, Compositio Math., 22 (1970), 165. Google Scholar

[6]

D. B. A. Epstein, Commutators of $C^\infty$-diffeomorphisms. Appendix to: "A curious remark concerning the geometric transfer map'' by John N. Mather,, Commentarii Mathematici Helvetici, 59 (1984), 111. doi: 10.1007/BF02566339. Google Scholar

[7]

S. Haller and J. Teichmann, Smooth perfectness through decomposition of diffeomorphisms into fiber preserving ones,, Annals of Global Analysis and Geometry, 23 (2003), 53. doi: 10.1023/A:1021280213742. Google Scholar

[8]

M. R. Herman, Simplicité du groupe des difféomorphismes de classe $C^\infty$, isotopes à l'identité, du tore de dimension n,, C. R. Acad. Sci. Paris Sr. A, 273 (1971), 232. Google Scholar

[9]

M. R. Herman, Sur le groupe des difféomorphismes du tore,, Annales de L'Institut Fourier (Grenoble), 23 (1973), 75. doi: 10.5802/aif.457. Google Scholar

[10]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics 33, 33 (1976). Google Scholar

[11]

A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis,", Mathematical Surveys and Monographs 53, 53 (1997). Google Scholar

[12]

J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms,, Topology, 10 (1071), 297. Google Scholar

[13]

J. N. Mather, Commutators of diffeomorphisms,, Comment. Math. Helv., 49 (1974), 512. Google Scholar

[14]

J. N. Mather, Commutators of diffeomorphisms. II,, Comment. Math. Helv., 50 (1975), 33. Google Scholar

[15]

J. N. Mather, A curious remark concerning the geometric transfer map,, Commentarii Mathematici Helvetici, 59 (1984), 86. doi: 10.1007/BF02566338. Google Scholar

[16]

J. Milnor, "Morse Theory,", Annals of Mathematics Studies 51, 51 (1963). Google Scholar

[17]

S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory,, Dokl. Akad. Nauk SSSR, 260 (1981), 31. Google Scholar

[18]

A. V. Pajitnov, "Circle-valued Morse Theory,", de Gruyter Studies in Mathematics 32, 32 (2006). doi: 10.1515/9783110197976. Google Scholar

[19]

T. Rybicki, The identity component of the leaf preserving diffeomorphism group is perfect,, Monatshefte fr Mathematik, 120 (1995), 289. doi: 10.1007/BF01294862. Google Scholar

[20]

T. Rybicki, Commutators of contactomorphisms,, Advances in Mathematics, 225 (2010), 3291. doi: 10.1016/j.aim.2010.06.004. Google Scholar

[21]

T. Rybicki, Locally continuously perfect groups of homeomorphisms,, Annals of Global Analysis and Geometry, 40 (2011), 191. doi: 10.1007/s10455-011-9253-5. Google Scholar

[22]

W. Thurston, Foliations and groups of diffeomorphisms,, Bulletin of the American Mathematical Society, 80 (1974), 304. doi: 10.1090/S0002-9904-1974-13475-0. Google Scholar

[23]

T. Tsuboi, On $2$-cycles of B Diff$(S^1)$ which are represented by foliated $S^1$-bundles over $T^2$,, Ann. Inst. Fourier, 31 (1981), 1. Google Scholar

[24]

T. Tsuboi, On the uniform perfectness of diffeomorphism groups,, Groups of diffeomorphisms, 52 (2008), 505. Google Scholar

[25]

T. Tsuboi, On the uniform simplicity of diffeomorphism groups,, Differential geometry, (2009), 43. doi: 10.1142/9789814261173_0004. Google Scholar

[26]

T. Tsuboi, On the uniform perfectness of the groups of diffeomorphisms of even-dimensional manifolds,, Commentarii Mathematici Helvetici, 87 (2012), 141. doi: 10.4171/CMH/251. Google Scholar

[27]

J.-C. Yoccoz, Petits diviseurs en dimension $1$,, Astérisque, 231 (1995). Google Scholar

[1]

Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571

[2]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

[3]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks & Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[4]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295

[5]

Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036

[6]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[7]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[8]

Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167

[9]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[10]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121

[11]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[12]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[13]

Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15

[14]

Marcelo Sobottka. Topological quasi-group shifts. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[15]

Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209

[16]

Nadya Markin, Eldho K. Thomas, Frédérique Oggier. On group violations of inequalities in five subgroups. Advances in Mathematics of Communications, 2016, 10 (4) : 871-893. doi: 10.3934/amc.2016047

[17]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[18]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[19]

Yuri Berest, Alimjon Eshmatov, Farkhod Eshmatov. On subgroups of the Dixmier group and Calogero-Moser spaces. Electronic Research Announcements, 2011, 18: 12-21. doi: 10.3934/era.2011.18.12

[20]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]