December  2012, 4(4): 469-485. doi: 10.3934/jgm.2012.4.469

Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids

1. 

Universidad Autónoma de Madrid (Dept. de Matemáticas), ICMAT(CSIC-UAM-UC3M-UCM), Campus de Cantoblanco, 28049 - Madrid, Spain

2. 

Courant Research Centre “Higher Order Structures”, Mathematisches Institut, University of Göttingen, Göttingen, 37073, Germany

Received  July 2012 Revised  August 2012 Published  January 2013

It is well-known that a Lie algebroid $A$ is equivalently described by a degree 1 NQ-manifold $\mathcal{M}$. We study distributions on $\mathcal{M}$, giving a characterization in terms of $A$. We show that involutive $Q$-invariant distributions on $\mathcal{M}$ correspond bijectively to IM-foliations on $A$ (the infinitesimal version of Mackenzie's ideal systems). We perform reduction by such distributions, and investigate how they arise from non-strict actions of strict Lie 2-algebras on $\mathcal{M}$.
Citation: Marco Zambon, Chenchang Zhu. Distributions and quotients on degree $1$ NQ-manifolds and Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 469-485. doi: 10.3934/jgm.2012.4.469
References:
[1]

J. C. Baez and A. S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras,, Theory Appl. Categ., 12 (2004), 492. Google Scholar

[2]

O. Brahic and C. Zhu, Lie algebroid fibrations,, Adv. Math., (2010). doi: 10.1016/j.aim.2010.10.006. Google Scholar

[3]

H. Bursztyn, A. S. Cattaneo, R. Metha and M. Zambon, Reduction of Courant algebroids via super-geometry,, in preparation., (). Google Scholar

[4]

H. Bursztyn and M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds,, in, 232 (2005), 1. doi: 10.1007/0-8176-4419-9_1. Google Scholar

[5]

A. S. Cattaneo, From topological field theory to deformation quantization and reduction,, in, III (2006), 339. Google Scholar

[6]

A. S. Cattaneo and F. Schätz, Introduction to supergeometry,, Rev. Math. Phys., 23 (2011), 669. doi: 10.1142/S0129055X11004400. Google Scholar

[7]

A. S. Cattaneo and M. Zambon, A super-geometric approach to Poisson reduction,, To appear in Comm. Math. Physics., (). Google Scholar

[8]

M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data,, \arXiv{1109.4515}., (). Google Scholar

[9]

Y. Kosmann-Schwarzbach, Derived brackets,, Lett. Math. Phys., 69 (2004), 61. doi: 10.1007/s11005-004-0608-8. Google Scholar

[10]

Y. Kosmann-Schwarzbach and K. C. H. Mackenzie, Differential operators and actions of Lie algebroids,, in, 315 (2002), 213. doi: 10.1090/conm/315/05482. Google Scholar

[11]

T. Lada and M. Markl, Strongly homotopy Lie algebras,, Comm. Algebra, 23 (1995), 2147. doi: 10.1080/00927879508825335. Google Scholar

[12]

K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids,'', \textbf{213} of London Mathematical Society Lecture Note Series. Cambridge University Press, 213 (2005). Google Scholar

[13]

R. A. Mehta, "Supergroupoids, Double Structures, and Equivariant Cohomology,'', Ph.D thesis, (2006). Google Scholar

[14]

R. A. Mehta and M. Zambon, $L_{\infty}$-algebra actions on graded manifolds,, to appear in Differential Geometry and its Applications., (). doi: 10.1016/j.difgeo.2012.07.006. Google Scholar

[15]

P. Ševera, Letter to Alan Weinstein,, \url{http://sophia.dtp.fmph.uniba.sk/~severa/letters/no8.ps}., (). Google Scholar

[16]

P. Ševera, Some title containing the words "homotopy'' and "symplectic'', e.g. this one,, in, (2005), 121. Google Scholar

[17]

P. Ševera, Poisson actions up to homotopy and their quantization,, Lett. Math. Phys., 77 (2006), 199. doi: 10.1007/s11005-006-0089-z. Google Scholar

[18]

L. Stefanini, "On Morphic Actions and Integrability of LA-Groupoids,'', Ph.D thesis, (2009). Google Scholar

[19]

A. Y. Vaĭntrob, Lie algebroids and homological vector fields,, Uspekhi Mat. Nauk, 52 (1997), 161. doi: 10.1070/RM1997v052n02ABEH001802. Google Scholar

[20]

T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids,, in, 315 (2002), 131. doi: 10.1090/conm/315/05478. Google Scholar

[21]

T. Voronov, Mackenzie theory and Q-manifolds,, \arXiv{math/0608111}, (2006). Google Scholar

[22]

T. T. Voronov, Q-manifolds and higher analogs of Lie algebroids,, XXIX Workshop on Geometric Methods in Physics. AIP CP 1307, (2010), 191. Google Scholar

[23]

M. Zambon and C. Zhu, Higher Lie algebra actions on Lie algebroids,, \arXiv{1012.0428v2} to appear in Journal of Geometry and Physics., (). Google Scholar

show all references

References:
[1]

J. C. Baez and A. S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras,, Theory Appl. Categ., 12 (2004), 492. Google Scholar

[2]

O. Brahic and C. Zhu, Lie algebroid fibrations,, Adv. Math., (2010). doi: 10.1016/j.aim.2010.10.006. Google Scholar

[3]

H. Bursztyn, A. S. Cattaneo, R. Metha and M. Zambon, Reduction of Courant algebroids via super-geometry,, in preparation., (). Google Scholar

[4]

H. Bursztyn and M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds,, in, 232 (2005), 1. doi: 10.1007/0-8176-4419-9_1. Google Scholar

[5]

A. S. Cattaneo, From topological field theory to deformation quantization and reduction,, in, III (2006), 339. Google Scholar

[6]

A. S. Cattaneo and F. Schätz, Introduction to supergeometry,, Rev. Math. Phys., 23 (2011), 669. doi: 10.1142/S0129055X11004400. Google Scholar

[7]

A. S. Cattaneo and M. Zambon, A super-geometric approach to Poisson reduction,, To appear in Comm. Math. Physics., (). Google Scholar

[8]

M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data,, \arXiv{1109.4515}., (). Google Scholar

[9]

Y. Kosmann-Schwarzbach, Derived brackets,, Lett. Math. Phys., 69 (2004), 61. doi: 10.1007/s11005-004-0608-8. Google Scholar

[10]

Y. Kosmann-Schwarzbach and K. C. H. Mackenzie, Differential operators and actions of Lie algebroids,, in, 315 (2002), 213. doi: 10.1090/conm/315/05482. Google Scholar

[11]

T. Lada and M. Markl, Strongly homotopy Lie algebras,, Comm. Algebra, 23 (1995), 2147. doi: 10.1080/00927879508825335. Google Scholar

[12]

K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids,'', \textbf{213} of London Mathematical Society Lecture Note Series. Cambridge University Press, 213 (2005). Google Scholar

[13]

R. A. Mehta, "Supergroupoids, Double Structures, and Equivariant Cohomology,'', Ph.D thesis, (2006). Google Scholar

[14]

R. A. Mehta and M. Zambon, $L_{\infty}$-algebra actions on graded manifolds,, to appear in Differential Geometry and its Applications., (). doi: 10.1016/j.difgeo.2012.07.006. Google Scholar

[15]

P. Ševera, Letter to Alan Weinstein,, \url{http://sophia.dtp.fmph.uniba.sk/~severa/letters/no8.ps}., (). Google Scholar

[16]

P. Ševera, Some title containing the words "homotopy'' and "symplectic'', e.g. this one,, in, (2005), 121. Google Scholar

[17]

P. Ševera, Poisson actions up to homotopy and their quantization,, Lett. Math. Phys., 77 (2006), 199. doi: 10.1007/s11005-006-0089-z. Google Scholar

[18]

L. Stefanini, "On Morphic Actions and Integrability of LA-Groupoids,'', Ph.D thesis, (2009). Google Scholar

[19]

A. Y. Vaĭntrob, Lie algebroids and homological vector fields,, Uspekhi Mat. Nauk, 52 (1997), 161. doi: 10.1070/RM1997v052n02ABEH001802. Google Scholar

[20]

T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids,, in, 315 (2002), 131. doi: 10.1090/conm/315/05478. Google Scholar

[21]

T. Voronov, Mackenzie theory and Q-manifolds,, \arXiv{math/0608111}, (2006). Google Scholar

[22]

T. T. Voronov, Q-manifolds and higher analogs of Lie algebroids,, XXIX Workshop on Geometric Methods in Physics. AIP CP 1307, (2010), 191. Google Scholar

[23]

M. Zambon and C. Zhu, Higher Lie algebra actions on Lie algebroids,, \arXiv{1012.0428v2} to appear in Journal of Geometry and Physics., (). Google Scholar

[1]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[2]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[3]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[4]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[5]

Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295

[6]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[7]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[8]

Felipe A. Ramírez. Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups. Journal of Modern Dynamics, 2009, 3 (3) : 335-357. doi: 10.3934/jmd.2009.3.335

[9]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[10]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[11]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[12]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[13]

Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243

[14]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[15]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[16]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[17]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[18]

Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001

[19]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[20]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]