December  2012, 4(4): 397-419. doi: 10.3934/jgm.2012.4.397

Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds

1. 

Departamento de Matemática Aplicada IV. Universitat Politècnica de Catalunya-BarcelonaTech., Campus Norte, Ed. C-3. C/ Jordi Girona 1, E-08034 Barcelona, Spain

2. 

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA, and Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain

3. 

Departamento de Matemática Aplicada IV, Universitat Politècnica de Catalunya-BarcelonaTech., Edificio C-3, Campus Norte UPC. C/ Jordi Girona 1, E-08034 Barcelona, Spain

4. 

Departamento de Matemática Aplicada IV. Universitat Politècnica de Catalunya-BarcelonaTech., Edificio C-3, Campus Norte UPC, C/ Jordi Girona 1. 08034 Barcelona

Received  May 2012 Revised  October 2012 Published  January 2013

It is shown that the geometry of locally homogeneous multisymplectic manifolds (that is, smooth manifolds equipped with a closed nondegenerate form of degree $> 1$, which is locally homogeneous of degree $k$ with respect to a local Euler field) is characterized by their automorphisms. Thus, locally homogeneous multisymplectic manifolds extend the family of classical geometries possessing a similar property: symplectic, volume and contact. The proof of the first result relies on the characterization of invariant differential forms with respect to the graded Lie algebra of infinitesimal automorphisms, and on the study of the local properties of Hamiltonian vector fields on locally multisymplectic manifolds. In particular it is proved that the group of multisymplectic diffeomorphisms acts (strongly locally) transitively on the manifold. It is also shown that the graded Lie algebra of infinitesimal automorphisms of a locally homogeneous multisymplectic manifold characterizes their multisymplectic diffeomorphisms.
Citation: Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397
References:
[1]

C. J. Atkin and J. Grabowsk, Homomorphisms of the Lie algebras associated with a symplectic manifold,, Comp. Math., 76 (1990), 315.

[2]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,, Comment. Math. Helv., 53 (1978), 174. doi: 10.1007/BF02566074.

[3]

A. Banyaga, On isomorphic classical diffeomorphism groups. I,, Proc. Am. Math. Soc., 98 (1986), 113. doi: 10.2307/2045779.

[4]

A. Banyaga, On isomorphic classical diffeomorphism groups. II,, J. Diff. Geom., 28 (1988), 23.

[5]

A. Banyaga, The structure of classical diffeomorphism groups,, in, 400 (1997), 113.

[6]

A. Banyaga and A. McInerney, On isomorphic classical diffeomorphism groups. III,, Ann. Global Anal. Geom., 13 (1995), 117. doi: 10.1007/BF01120327.

[7]

W. M. Boothby, Transitivity of the automorphisms of certain geometric structures,, Amer. Math. Soc., 137 (1969), 93.

[8]

R. L. Bryant, Metrics with exceptional holonomy,, Ann. Math. (2), 126 (1987), 525. doi: 10.2307/1971360.

[9]

F. Cantrijn, A. Ibort and M. de León, Hamiltonian structures on multisymplectic manifolds,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.

[10]

F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds,, J. Austral. Math. Soc. Ser., 66 (1999), 303.

[11]

J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Diff. Geom. Appl., 1 (1991), 345. doi: 10.1016/0926-2245(91)90013-Y.

[12]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román-Roy, Canonical transformation theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961. doi: 10.1063/1.526864.

[13]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector fields and connections. Setting Lagrangian equations in field theories,, J. Math. Phys., 39 (1998), 4578. doi: 10.1063/1.532525.

[14]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries,, J. Phys. A: Math. Gen., 32 (1999), 8461. doi: 10.1088/0305-4470/32/48/309.

[15]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories,, J. Math. Phys., 41 (2000), 7402. doi: 10.1063/1.1308075.

[16]

A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2801875.

[17]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,", World Sci. Pub. Co., (1997).

[18]

J. Gomis, J. Llosa and N. Román-Roy, Lee Hwa Chung theorem for presymplectic manifolds. Canonical transformations for constrained systems,, J. Math. Phys., 25 (1984), 1348. doi: 10.1063/1.526303.

[19]

M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,, in, (1991), 203.

[20]

J. Grabowski, "Isomorphisms of Poisson and Jacobi Brackets,", Banach Center Publ., 51 (2000), 79.

[21]

F. Helein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theories,, J. Math. Phys., 43 (2002), 2306. doi: 10.1063/1.1467710.

[22]

L. Hwa Chung, The universal integral invariants of Hamiltonian systems and applications to the theory of canonical transformations,, Proc. Roy. Soc., LXIIA (1947), 237.

[23]

L. A. Ibort, Multisymplectic geometry: Generic and exceptional,, in, (2000), 79.

[24]

I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space,, Rep. Math. Phys., 41 (1998), 49. doi: 10.1016/S0034-4877(98)80182-1.

[25]

J. Kijowski and W. M. Tulckzyjew, "A Symplectic Framework for Field Theories,", Lecture Notes in Physics \textbf{107}, 107 (1979).

[26]

M. de León D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories,, in, (2003), 21.

[27]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Symmetries in classical field theories,, Int. J. Geom. Meth. Mod. Phys., 1 (2004), 651. doi: 10.1142/S0219887804000290.

[28]

J. Llosa and N. Román-Roy, Invariant forms and Hamiltonian systems: A geometrical setting,, Int. J. Theor. Phys., 27 (1988), 1533. doi: 10.1007/BF00669290.

[29]

C. M. Marle, The Schouten-Nijenhuis bracket and interior products,, J. Geom. Phys., 23 (1997), 350. doi: 10.1016/S0393-0440(97)80009-5.

[30]

J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves,, Math. Proc. Camb. Phil. Soc., 125 (1999), 553. doi: 10.1017/S0305004198002953.

[31]

J. Martinet, Sur les singularités des formes différentielles,, Ann. Inst. Fourier, 20 (1970), 95.

[32]

H. Omori, "Infinite Dimensional Lie Transformation Groups,", Lect. Notes in Maths., 427 (1974).

[33]

C. Paufler and H. Romer, Geometry of Hamiltonian $n$-vector fields in multisymplectic field theory,, J. Geom. Phys., 44 (2002), 52. doi: 10.1016/S0393-0440(02)00031-1.

[34]

L. E. Pursell and M. E. Shanks, The Lie algebra of smooth manifolds,, Proc. Am. Math. Soc., 5 (1954), 468.

[35]

N. Román-Roy, A. M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories,, J. Geom. Mech., 3 (2011), 113.

[36]

G. Sardanashvily, "Generalized Hamiltonian Formalism for Field Theory,", World Scientific Pub., (1995). doi: 10.1142/9789812831484.

[37]

D. J. Saunders, "The Geometry of Jet Bundles,", London Math. Soc. Lect. Notes Ser. \textbf{142}, 142 (1989). doi: 10.1017/CBO9780511526411.

[38]

M. Shafiee, On Hamiltonian group of multisymplectic manifolds,, Int. J. Geom. Meth. Mod. Phys., 8 (2011), 929. doi: 10.1142/S0219887811005506.

[39]

F. Takens, Characterization of a differentiable structure by its group of diffeomorphisms,, Bol Soc. Brasil. Mat., 10 (1979), 17. doi: 10.1007/BF02588337.

[40]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Hamiltoniènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 15.

[41]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Lagrangiènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 675.

[42]

M. Wechsler, Homeomorphism groups of certain topological spaces,, Ann. Math., 62 (1954), 360.

show all references

References:
[1]

C. J. Atkin and J. Grabowsk, Homomorphisms of the Lie algebras associated with a symplectic manifold,, Comp. Math., 76 (1990), 315.

[2]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,, Comment. Math. Helv., 53 (1978), 174. doi: 10.1007/BF02566074.

[3]

A. Banyaga, On isomorphic classical diffeomorphism groups. I,, Proc. Am. Math. Soc., 98 (1986), 113. doi: 10.2307/2045779.

[4]

A. Banyaga, On isomorphic classical diffeomorphism groups. II,, J. Diff. Geom., 28 (1988), 23.

[5]

A. Banyaga, The structure of classical diffeomorphism groups,, in, 400 (1997), 113.

[6]

A. Banyaga and A. McInerney, On isomorphic classical diffeomorphism groups. III,, Ann. Global Anal. Geom., 13 (1995), 117. doi: 10.1007/BF01120327.

[7]

W. M. Boothby, Transitivity of the automorphisms of certain geometric structures,, Amer. Math. Soc., 137 (1969), 93.

[8]

R. L. Bryant, Metrics with exceptional holonomy,, Ann. Math. (2), 126 (1987), 525. doi: 10.2307/1971360.

[9]

F. Cantrijn, A. Ibort and M. de León, Hamiltonian structures on multisymplectic manifolds,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.

[10]

F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds,, J. Austral. Math. Soc. Ser., 66 (1999), 303.

[11]

J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Diff. Geom. Appl., 1 (1991), 345. doi: 10.1016/0926-2245(91)90013-Y.

[12]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román-Roy, Canonical transformation theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961. doi: 10.1063/1.526864.

[13]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector fields and connections. Setting Lagrangian equations in field theories,, J. Math. Phys., 39 (1998), 4578. doi: 10.1063/1.532525.

[14]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries,, J. Phys. A: Math. Gen., 32 (1999), 8461. doi: 10.1088/0305-4470/32/48/309.

[15]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories,, J. Math. Phys., 41 (2000), 7402. doi: 10.1063/1.1308075.

[16]

A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2801875.

[17]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,", World Sci. Pub. Co., (1997).

[18]

J. Gomis, J. Llosa and N. Román-Roy, Lee Hwa Chung theorem for presymplectic manifolds. Canonical transformations for constrained systems,, J. Math. Phys., 25 (1984), 1348. doi: 10.1063/1.526303.

[19]

M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,, in, (1991), 203.

[20]

J. Grabowski, "Isomorphisms of Poisson and Jacobi Brackets,", Banach Center Publ., 51 (2000), 79.

[21]

F. Helein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theories,, J. Math. Phys., 43 (2002), 2306. doi: 10.1063/1.1467710.

[22]

L. Hwa Chung, The universal integral invariants of Hamiltonian systems and applications to the theory of canonical transformations,, Proc. Roy. Soc., LXIIA (1947), 237.

[23]

L. A. Ibort, Multisymplectic geometry: Generic and exceptional,, in, (2000), 79.

[24]

I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space,, Rep. Math. Phys., 41 (1998), 49. doi: 10.1016/S0034-4877(98)80182-1.

[25]

J. Kijowski and W. M. Tulckzyjew, "A Symplectic Framework for Field Theories,", Lecture Notes in Physics \textbf{107}, 107 (1979).

[26]

M. de León D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories,, in, (2003), 21.

[27]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Symmetries in classical field theories,, Int. J. Geom. Meth. Mod. Phys., 1 (2004), 651. doi: 10.1142/S0219887804000290.

[28]

J. Llosa and N. Román-Roy, Invariant forms and Hamiltonian systems: A geometrical setting,, Int. J. Theor. Phys., 27 (1988), 1533. doi: 10.1007/BF00669290.

[29]

C. M. Marle, The Schouten-Nijenhuis bracket and interior products,, J. Geom. Phys., 23 (1997), 350. doi: 10.1016/S0393-0440(97)80009-5.

[30]

J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves,, Math. Proc. Camb. Phil. Soc., 125 (1999), 553. doi: 10.1017/S0305004198002953.

[31]

J. Martinet, Sur les singularités des formes différentielles,, Ann. Inst. Fourier, 20 (1970), 95.

[32]

H. Omori, "Infinite Dimensional Lie Transformation Groups,", Lect. Notes in Maths., 427 (1974).

[33]

C. Paufler and H. Romer, Geometry of Hamiltonian $n$-vector fields in multisymplectic field theory,, J. Geom. Phys., 44 (2002), 52. doi: 10.1016/S0393-0440(02)00031-1.

[34]

L. E. Pursell and M. E. Shanks, The Lie algebra of smooth manifolds,, Proc. Am. Math. Soc., 5 (1954), 468.

[35]

N. Román-Roy, A. M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories,, J. Geom. Mech., 3 (2011), 113.

[36]

G. Sardanashvily, "Generalized Hamiltonian Formalism for Field Theory,", World Scientific Pub., (1995). doi: 10.1142/9789812831484.

[37]

D. J. Saunders, "The Geometry of Jet Bundles,", London Math. Soc. Lect. Notes Ser. \textbf{142}, 142 (1989). doi: 10.1017/CBO9780511526411.

[38]

M. Shafiee, On Hamiltonian group of multisymplectic manifolds,, Int. J. Geom. Meth. Mod. Phys., 8 (2011), 929. doi: 10.1142/S0219887811005506.

[39]

F. Takens, Characterization of a differentiable structure by its group of diffeomorphisms,, Bol Soc. Brasil. Mat., 10 (1979), 17. doi: 10.1007/BF02588337.

[40]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Hamiltoniènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 15.

[41]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Lagrangiènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 675.

[42]

M. Wechsler, Homeomorphism groups of certain topological spaces,, Ann. Math., 62 (1954), 360.

[1]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[2]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[3]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[4]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[5]

Pablo Aguirre, Eusebius J. Doedel, Bernd Krauskopf, Hinke M. Osinga. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1309-1344. doi: 10.3934/dcds.2011.29.1309

[6]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[7]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[8]

Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113

[9]

Pedro Daniel Prieto-Martínez, Narciso Román-Roy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203-253. doi: 10.3934/jgm.2015.7.203

[10]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[11]

Tomas Johnson, Warwick Tucker. Automated computation of robust normal forms of planar analytic vector fields. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 769-782. doi: 10.3934/dcdsb.2009.12.769

[12]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[13]

Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257

[14]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[15]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[16]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[17]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[18]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[19]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[20]

Yuri B. Suris. Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms. Journal of Geometric Mechanics, 2013, 5 (3) : 365-379. doi: 10.3934/jgm.2013.5.365

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

[Back to Top]