December  2012, 4(4): 385-395. doi: 10.3934/jgm.2012.4.385

Semi-simple generalized Nijenhuis operators

1. 

Univ. Montpellier 2, I3M UMR CNRS 5149, F-34095 Montpellier, France

2. 

Univ. Perpignan Via Domitia, LAboratoire de Mathmatiques et PhySique, EA 4217, F-66860 Perpignan, France

Received  December 2011 Revised  June 2012 Published  January 2013

We study a special class of endomorphism fields of the generalized tangent bundle ${\mathcal{T}}M:=TM\oplus T^*M$ of a smooth manifold $M$. An operator of this class is defined as follows: it has a vanishing Courant-Nijenhuis torsion and is diagonalizable (after a possible extension of scalars) with constant dimensions of its eigenspaces. Such an endomorphism field is called a semi-simple generalized Nijenhuis operator. The generalized paracomplex and complex structures give examples of such operators.
    In this study, we distinguish two cases according to whether the operator has exactly two eigenvalues or has at least three elements in its spectrum. In the first case, we prove that either the operator is affinely related to a generalized complex structure, or it is equivalent to a pair of transverse Dirac structures on ${\mathcal{T}}M$. In the second case, the semi-simple generalized Nijenhuis operator is conjugate to a special kind of generalized Nijenhuis operator obtained from usual Nijenhuis tensors.
Citation: Hassan Boualem, Robert Brouzet. Semi-simple generalized Nijenhuis operators. Journal of Geometric Mechanics, 2012, 4 (4) : 385-395. doi: 10.3934/jgm.2012.4.385
References:
[1]

J. Cariñena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions,, J. Phys. A, 37 (2004), 5189. doi: 10.1088/0305-4470/37/19/006. Google Scholar

[2]

V. Cruceanu, P. Fortuny and P. M. Gadea, Survey on paracomplex geometry,, The Rocky Mountain J. of Math., 26 (1996), 83. doi: 10.1216/rmjm/1181072105. Google Scholar

[3]

T. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631. doi: 10.2307/2001258. Google Scholar

[4]

T. Courant and A. Weinstein, Beyond Poisson structures,, Travaux en Cours, 27 (1988), 39. Google Scholar

[5]

M. Crainic, Generalized complex structures and Lie brackets,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 559. doi: 10.1007/s00574-011-0029-0. Google Scholar

[6]

A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms I,, Indag. Math., 18 (1956), 338. Google Scholar

[7]

J. Grabowski, Courant-Nijenhuis tensor and generalized geometries,, Monogr. Real Acad. Ci. Exact. Fis.-Quim. Nat. Zaragoza, 29 (2006), 101. Google Scholar

[8]

M. Gualtieri, "Generalized Complex Geometry,", Ph.D Thesis, (2003). Google Scholar

[9]

N. Hitchin, Generalized Calabi-Yau manifolds,, Quart. J. Math., 54 (2003), 281. doi: 10.1093/qjmath/54.3.281. Google Scholar

[10]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids,, Bull. Braz. Math. Soc., 42 (2011), 625. doi: 10.1007/s00574-011-0032-5. Google Scholar

[11]

P. Libermann, Sur les structures presque paracomplexes,, C. R. Acad. Sci. Paris, 234 (1952), 2517. Google Scholar

[12]

Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie algebroids,, J. Differential Geometry, 45 (1997), 547. Google Scholar

[13]

A. Nijenhuis, Jacobi-type identities for bilinear concomitants of certain tensor fields,, Indag. Math. A, 58 (1955), 390. Google Scholar

[14]

A. Wade, Dirac structures and paracomplex manifolds,, C. R. Acad. Sci. Paris, 338 (2004), 889. doi: 10.1016/j.crma.2004.03.031. Google Scholar

show all references

References:
[1]

J. Cariñena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions,, J. Phys. A, 37 (2004), 5189. doi: 10.1088/0305-4470/37/19/006. Google Scholar

[2]

V. Cruceanu, P. Fortuny and P. M. Gadea, Survey on paracomplex geometry,, The Rocky Mountain J. of Math., 26 (1996), 83. doi: 10.1216/rmjm/1181072105. Google Scholar

[3]

T. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631. doi: 10.2307/2001258. Google Scholar

[4]

T. Courant and A. Weinstein, Beyond Poisson structures,, Travaux en Cours, 27 (1988), 39. Google Scholar

[5]

M. Crainic, Generalized complex structures and Lie brackets,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 559. doi: 10.1007/s00574-011-0029-0. Google Scholar

[6]

A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms I,, Indag. Math., 18 (1956), 338. Google Scholar

[7]

J. Grabowski, Courant-Nijenhuis tensor and generalized geometries,, Monogr. Real Acad. Ci. Exact. Fis.-Quim. Nat. Zaragoza, 29 (2006), 101. Google Scholar

[8]

M. Gualtieri, "Generalized Complex Geometry,", Ph.D Thesis, (2003). Google Scholar

[9]

N. Hitchin, Generalized Calabi-Yau manifolds,, Quart. J. Math., 54 (2003), 281. doi: 10.1093/qjmath/54.3.281. Google Scholar

[10]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids,, Bull. Braz. Math. Soc., 42 (2011), 625. doi: 10.1007/s00574-011-0032-5. Google Scholar

[11]

P. Libermann, Sur les structures presque paracomplexes,, C. R. Acad. Sci. Paris, 234 (1952), 2517. Google Scholar

[12]

Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie algebroids,, J. Differential Geometry, 45 (1997), 547. Google Scholar

[13]

A. Nijenhuis, Jacobi-type identities for bilinear concomitants of certain tensor fields,, Indag. Math. A, 58 (1955), 390. Google Scholar

[14]

A. Wade, Dirac structures and paracomplex manifolds,, C. R. Acad. Sci. Paris, 338 (2004), 889. doi: 10.1016/j.crma.2004.03.031. Google Scholar

[1]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[2]

Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237

[3]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[4]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[5]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[6]

Felipe Linares, M. Scialom. On generalized Benjamin type equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 161-174. doi: 10.3934/dcds.2005.12.161

[7]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[8]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[9]

Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143

[10]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[11]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[12]

Seung Jun Chang, Jae Gil Choi. Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Communications on Pure & Applied Analysis, 2020, 19 (1) : 371-389. doi: 10.3934/cpaa.2020019

[13]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[14]

David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58

[15]

Viktor L. Ginzburg and Basak Z. Gurel. The Generalized Weinstein--Moser Theorem. Electronic Research Announcements, 2007, 14: 20-29. doi: 10.3934/era.2007.14.20

[16]

Fuchen Zhang, Xiaofeng Liao, Guangyun Zhang, Chunlai Mu, Min Xiao, Ping Zhou. Dynamical behaviors of a generalized Lorenz family. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3707-3720. doi: 10.3934/dcdsb.2017184

[17]

L. Bakker, G. Conner. A class of generalized symmetries of smooth flows. Communications on Pure & Applied Analysis, 2004, 3 (2) : 183-195. doi: 10.3934/cpaa.2004.3.183

[18]

Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska. Generalized Stokes system in Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2125-2146. doi: 10.3934/dcds.2012.32.2125

[19]

Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190

[20]

Dmitry V. Zenkov, Anthony M. Bloch. Dynamics of generalized Euler tops with constraints. Conference Publications, 2001, 2001 (Special) : 398-405. doi: 10.3934/proc.2001.2001.398

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]