March  2011, 3(1): 23-40. doi: 10.3934/jgm.2011.3.23

Reduction of invariant constrained systems using anholonomic frames

1. 

Department of Mathematics, Ghent University, Krijgslaan 281, S9, B-9000 Gent, Belgium, Belgium

Received  October 2010 Revised  April 2011 Published  April 2011

We analyze two reduction methods for nonholonomic systems that are invariant under the action of a Lie group on the configuration space. Our approach for obtaining the reduced equations is entirely based on the observation that the dynamics can be represented by a second-order differential equations vector field and that in both cases the reduced dynamics can be described by expressing that vector field in terms of an appropriately chosen anholonomic frame.
Citation: Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23
References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21. doi: 10.1007/BF02199365.

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187. doi: 10.1080/14689360802609344.

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323. doi: 10.1017/S0305004101005679.

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2885077.

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241. doi: 10.1007/s10440-008-9274-7.

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159. doi: 10.1080/14689360903360888.

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005). doi: 10.1088/0305-4470/38/24/R01.

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555. doi: 10.1088/0951-7715/14/6/308.

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113. doi: 10.1007/BF00375092.

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098. doi: 10.1063/1.532196.

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379. doi: 10.1063/1.533317.

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/34/344015.

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097. doi: 10.1088/0305-4470/38/5/011.

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253. doi: 10.1088/0305-4470/28/11/022.

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.

show all references

References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21. doi: 10.1007/BF02199365.

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187. doi: 10.1080/14689360802609344.

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323. doi: 10.1017/S0305004101005679.

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008). doi: 10.1063/1.2885077.

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241. doi: 10.1007/s10440-008-9274-7.

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159. doi: 10.1080/14689360903360888.

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005). doi: 10.1088/0305-4470/38/24/R01.

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555. doi: 10.1088/0951-7715/14/6/308.

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113. doi: 10.1007/BF00375092.

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098. doi: 10.1063/1.532196.

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379. doi: 10.1063/1.533317.

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/34/344015.

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097. doi: 10.1088/0305-4470/38/5/011.

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253. doi: 10.1088/0305-4470/28/11/022.

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[2]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[3]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[4]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[5]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[6]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[7]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[8]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[10]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

[11]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[12]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[13]

Carolin Kreisbeck. A note on $3$d-$1$d dimension reduction with differential constraints. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 55-73. doi: 10.3934/dcdss.2017003

[14]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295

[15]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[16]

Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1533-1543. doi: 10.3934/dcds.2018121

[17]

Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041

[18]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[19]

Radu Balan, Peter G. Casazza, Christopher Heil and Zeph Landau. Density, overcompleteness, and localization of frames. Electronic Research Announcements, 2006, 12: 71-86.

[20]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]