July  2016, 3(3): 225-230. doi: 10.3934/jdg.2016012

A Malthus-Swan-Solow model of economic growth

1. 

Departmento de Economía, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe (Madrid), Spain

Received  November 2015 Revised  February 2016 Published  July 2016

In this paper we introduce in the Solow-Swan growth model a labor supply based on Malthusian ideas. We show that this model may yield several steady states and that an increase in total factor productivity might decrease the capital-labor ratio in a stable equilibrium.
Citation: Luis C. Corchón. A Malthus-Swan-Solow model of economic growth. Journal of Dynamics & Games, 2016, 3 (3) : 225-230. doi: 10.3934/jdg.2016012
References:
[1]

E. Accinelli and G. Brida, The ramsey model with logistic population growth,, Economics Bulletin, 3 (2007), 1. Google Scholar

[2]

E. Accinelli and G. Brida, Population growth and the Solow-Swan model,, International Journal of Ecological Economics and Statistics, 8 (2007), 54. Google Scholar

[3]

A. Alonso, C. Echevarria and K. C. Tran, Long-run economic performance and the labor market,, Southern Economic Journal, 79 (2004), 905. Google Scholar

[4]

L. Fanti and P. Manfredi, The Solow's model with endogenous population,, Journal of Economic Development, 28 (2003), 103. Google Scholar

[5]

O. Galor, From stagnation to growth: Unified growth theory,, Handbook of Economic Growth, (2005), 171. Google Scholar

[6]

L. Guerrini, The Solow-Swan model with a bounded population growth rate,, Journal of Mathematical Economics, 42 (2006), 14. doi: 10.1016/j.jmateco.2005.05.001. Google Scholar

[7]

G. D. Hansen and E. C. Prescott, Malthus to solow,, American Economic Review, 92 (2002), 1205. Google Scholar

[8]

A. Irmen, Malthus and Solow - a note on closed-form solutions,, Economics Bulletin, 10 (2004), 1. Google Scholar

[9]

T. R. Malthus, An Essay on the Principle of Population,, J. Johnson, (1798). Google Scholar

[10]

R. M. Solow, A contribution to the theory of economic growth,, Quarterly Journal of Economics, 70 (1956), 65. Google Scholar

[11]

T. W. Swan, Economic Growth and Capital Accumulation,, Economic Record, 32 (1956), 334. Google Scholar

[12]

N. Voigtländer and H.-J. Voth, The three horsemen of riches: Plague, war, and urbanization in early modern europe,, SSRN 1029347. Revised 2011., (1029). Google Scholar

[13]

J. G. Williamson, Growth, distribution, and demography: Some lessons from history,, Explorations in Economic History, 35 (1998), 241. Google Scholar

show all references

References:
[1]

E. Accinelli and G. Brida, The ramsey model with logistic population growth,, Economics Bulletin, 3 (2007), 1. Google Scholar

[2]

E. Accinelli and G. Brida, Population growth and the Solow-Swan model,, International Journal of Ecological Economics and Statistics, 8 (2007), 54. Google Scholar

[3]

A. Alonso, C. Echevarria and K. C. Tran, Long-run economic performance and the labor market,, Southern Economic Journal, 79 (2004), 905. Google Scholar

[4]

L. Fanti and P. Manfredi, The Solow's model with endogenous population,, Journal of Economic Development, 28 (2003), 103. Google Scholar

[5]

O. Galor, From stagnation to growth: Unified growth theory,, Handbook of Economic Growth, (2005), 171. Google Scholar

[6]

L. Guerrini, The Solow-Swan model with a bounded population growth rate,, Journal of Mathematical Economics, 42 (2006), 14. doi: 10.1016/j.jmateco.2005.05.001. Google Scholar

[7]

G. D. Hansen and E. C. Prescott, Malthus to solow,, American Economic Review, 92 (2002), 1205. Google Scholar

[8]

A. Irmen, Malthus and Solow - a note on closed-form solutions,, Economics Bulletin, 10 (2004), 1. Google Scholar

[9]

T. R. Malthus, An Essay on the Principle of Population,, J. Johnson, (1798). Google Scholar

[10]

R. M. Solow, A contribution to the theory of economic growth,, Quarterly Journal of Economics, 70 (1956), 65. Google Scholar

[11]

T. W. Swan, Economic Growth and Capital Accumulation,, Economic Record, 32 (1956), 334. Google Scholar

[12]

N. Voigtländer and H.-J. Voth, The three horsemen of riches: Plague, war, and urbanization in early modern europe,, SSRN 1029347. Revised 2011., (1029). Google Scholar

[13]

J. G. Williamson, Growth, distribution, and demography: Some lessons from history,, Explorations in Economic History, 35 (1998), 241. Google Scholar

[1]

Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics & Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011

[2]

AdélaÏde Olivier. How does variability in cell aging and growth rates influence the Malthus parameter?. Kinetic & Related Models, 2017, 10 (2) : 481-512. doi: 10.3934/krm.2017019

[3]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[4]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[5]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[6]

Fabio Augusto Milner. How Do Nonreproductive Groups Affect Population Growth?. Mathematical Biosciences & Engineering, 2005, 2 (3) : 579-590. doi: 10.3934/mbe.2005.2.579

[7]

Dong Liang, Jianhong Wu, Fan Zhang. Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences & Engineering, 2005, 2 (1) : 111-132. doi: 10.3934/mbe.2005.2.111

[8]

Pao-Liu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 55-65. doi: 10.3934/dcdsb.2016.21.55

[9]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[10]

Michael Winkler. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2777-2793. doi: 10.3934/dcdsb.2017135

[11]

Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169

[12]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[13]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[14]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. Metering effects in population systems. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1365-1379. doi: 10.3934/mbe.2013.10.1365

[15]

Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[16]

Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331

[17]

Sepideh Mirrahimi. Adaptation and migration of a population between patches. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 753-768. doi: 10.3934/dcdsb.2013.18.753

[18]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[19]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[20]

Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]