July  2014, 1(3): 485-495. doi: 10.3934/jdg.2014.1.485

Local stability of strict equilibria under evolutionary game dynamics

1. 

Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706, United States

Received  November 2012 Revised  July 2013 Published  July 2014

We consider the stability of strict equilibrium under deterministic evolutionary game dynamics. We show that if the correlation between strategies' growth rates and payoffs is positive and bounded away from zero in a neighborhood of a strict equilibrium, then this equilibrium is locally stable.
Citation: William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485
References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73. Google Scholar

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1. doi: 10.1016/S0165-4896(97)00009-7. Google Scholar

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51. doi: 10.1016/S0022-0531(03)00078-4. Google Scholar

[4]

D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637. doi: 10.2307/2938222. Google Scholar

[5]

J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995). Google Scholar

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81. Google Scholar

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665. doi: 10.1016/j.jet.2009.01.007. Google Scholar

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609. doi: 10.1016/0022-5193(79)90058-4. Google Scholar

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, (). Google Scholar

[10]

E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138. doi: 10.1006/game.1997.0636. Google Scholar

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565. doi: 10.1016/j.geb.2008.02.002. Google Scholar

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15. Google Scholar

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59. doi: 10.1007/BF01753708. Google Scholar

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363. doi: 10.1016/0022-0531(92)90041-F. Google Scholar

[15]

W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81. doi: 10.1006/jeth.2000.2696. Google Scholar

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149. doi: 10.1016/j.jet.2005.02.003. Google Scholar

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27. doi: 10.3982/TE505. Google Scholar

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3. doi: 10.3390/g1010003. Google Scholar

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010). Google Scholar

[20]

B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990). Google Scholar

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245. doi: 10.1287/trsc.18.3.245. Google Scholar

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455. doi: 10.1006/game.1993.1025. Google Scholar

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145. doi: 10.1016/0025-5564(78)90077-9. Google Scholar

[24]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995). Google Scholar

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165. Google Scholar

[26]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472. Google Scholar

show all references

References:
[1]

G. W. Brown and J. von Neumann, Solutions of games by differential equations,, in Contributions to the Theory of Games I, (1950), 73. Google Scholar

[2]

R. Cressman, Local stability of smooth selection dynamics for normal form games,, Mathematical Social Sciences, 34 (1997), 1. doi: 10.1016/S0165-4896(97)00009-7. Google Scholar

[3]

S. Demichelis and K. Ritzberger, From evolutionary to strategic stability,, Journal of Economic Theory, 113 (2003), 51. doi: 10.1016/S0022-0531(03)00078-4. Google Scholar

[4]

D. Friedman, Evolutionary games in economics,, Econometrica, 59 (1991), 637. doi: 10.2307/2938222. Google Scholar

[5]

J. Hofbauer, Stability for the Best Response Dynamics,, Unpublished manuscript, (1995). Google Scholar

[6]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS,, Selection, 1 (2000), 81. Google Scholar

[7]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics,, Journal of Economic Theory, 144 (2009), 1665. doi: 10.1016/j.jet.2009.01.007. Google Scholar

[8]

J. Hofbauer, P. Schuster and K. Sigmund, A note on evolutionarily stable strategies and game dynamics,, Journal of Theoretical Biology, 81 (1979), 609. doi: 10.1016/0022-5193(79)90058-4. Google Scholar

[9]

J. Hofbauer and K. Sigmund, Theory of Evolution and Dynamical Systems,, Cambridge University Press, (). Google Scholar

[10]

E. Hopkins, A note on best response dynamics,, Games and Economic Behavior, 29 (1999), 138. doi: 10.1006/game.1997.0636. Google Scholar

[11]

R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games,, Games and Economic Behavior, 64 (2008), 565. doi: 10.1016/j.geb.2008.02.002. Google Scholar

[12]

J. Maynard Smith and G. R. Price, The logic of animal conflict,, Nature, 246 (1973), 15. Google Scholar

[13]

J. H. Nachbar, 'Evolutionary' selection dynamics in games: Convergence and limit properties,, International Journal of Game Theory, 19 (1990), 59. doi: 10.1007/BF01753708. Google Scholar

[14]

L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, Journal of Economic Theory, 57 (1992), 363. doi: 10.1016/0022-0531(92)90041-F. Google Scholar

[15]

W. H. Sandholm, Potential games with continuous player sets,, Journal of Economic Theory, 97 (2001), 81. doi: 10.1006/jeth.2000.2696. Google Scholar

[16]

W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics,, Journal of Economic Theory, 124 (2005), 149. doi: 10.1016/j.jet.2005.02.003. Google Scholar

[17]

W. H. Sandholm, Local stability under evolutionary game dynamics,, Theoretical Economics, 5 (2010), 27. doi: 10.3982/TE505. Google Scholar

[18]

W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium,, Games, 1 (2010), 3. doi: 10.3390/g1010003. Google Scholar

[19]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010). Google Scholar

[20]

B. Skyrms, The Dynamics of Rational Deliberation,, Harvard University Press, (1990). Google Scholar

[21]

M. J. Smith, The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov,, Transportation Science, 18 (1984), 245. doi: 10.1287/trsc.18.3.245. Google Scholar

[22]

J. M. Swinkels, Adjustment dynamics and rational play in games,, Games and Economic Behavior, 5 (1993), 455. doi: 10.1006/game.1993.1025. Google Scholar

[23]

P. D. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145. doi: 10.1016/0025-5564(78)90077-9. Google Scholar

[24]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995). Google Scholar

[25]

J. W. Weibull, The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'., Journal of Economic Theory, 69 (1996), 165. Google Scholar

[26]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. Z. Nitecki and C. Robinson) (Evanston, (1979), 472. Google Scholar

[1]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[2]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[3]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[4]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[5]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[6]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[7]

Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803

[8]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[9]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[10]

Saulo R.M. Barros, Antônio L. Pereira, Cláudio Possani, Adilson Simonis. Spatially periodic equilibria for a non local evolution equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 937-948. doi: 10.3934/dcds.2003.9.937

[11]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

[12]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[13]

Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101

[14]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[15]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019036

[16]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[17]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[18]

Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503

[19]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[20]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]