June  2019, 6(1): 111-130. doi: 10.3934/jcd.2019005

Symplectic integration of PDEs using Clebsch variables

1. 

School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand

2. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, Sentralbygg 2, Gløshaugen, Norway

Published  July 2019

Fund Project: This research was supported by the Marsden Fund of the Royal Society Te Apārangi

Many PDEs (Burgers' equation, KdV, Camassa-Holm, Euler's fluid equations, …) can be formulated as infinite-dimensional Lie-Poisson systems. These are Hamiltonian systems on manifolds equipped with Poisson brackets. The Poisson structure is connected to conservation properties and other geometric features of solutions to the PDE and, therefore, of great interest for numerical integration. For the example of Burgers' equations and related PDEs we use Clebsch variables to lift the original system to a collective Hamiltonian system on a symplectic manifold whose structure is related to the original Lie-Poisson structure. On the collective Hamiltonian system a symplectic integrator can be applied. Our numerical examples show excellent conservation properties and indicate that the disadvantage of an increased phase-space dimension can be outweighed by the advantage of symplectic integration.

Citation: Robert I McLachlan, Christian Offen, Benjamin K Tapley. Symplectic integration of PDEs using Clebsch variables. Journal of Computational Dynamics, 2019, 6 (1) : 111-130. doi: 10.3934/jcd.2019005
References:
[1]

L. Brugnano, M. Calvo, J. Montijano and L. Rández, Energy-preserving methods for Poisson systems, Journal of Computational and Applied Mathematics, 236 (2012), 3890–3904, 40 years of numerical analysis: "Is the discrete world an approximation of the continuous one or is it the other way around". doi: 10.1016/j.cam.2012.02.033. Google Scholar

[2]

A. Chern, F. Knöppel, U. Pinkall, P. Schröder and S. Weiẞmann, Schrödinger's smoke, ACM Transactions on Graphics (TOG), 35 (2016), 77. doi: 10.1145/2897824.2925868. Google Scholar

[3]

D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numerical Mathematics, 51 (2011), 91-101. doi: 10.1007/s10543-011-0310-z. Google Scholar

[4]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 305205, 14pp. doi: 10.1088/1751-8113/44/30/305205. Google Scholar

[5]

D. M. de Diego, Lie-Poisson integrators, preprint, arXiv: 1803.01427, URL https://arXiv.org/abs/1803.01427.Google Scholar

[6]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition. Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8. Google Scholar

[7]

B. Khesin and R. Wendt, Infinite-dimensional lie groups: Their geometry, orbits, and dynamical systems, The Geometry of Infinite-Dimensional Groups, 2009, 47–153. doi: 10.1007/978-3-540-77263-7_2. Google Scholar

[8]

A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, vol. 53, AMS, 1997. doi: 10.1090/surv/053. Google Scholar

[9]

E. Kuznetsov and A. Mikhailov, On the topological meaning of canonical Clebsch variables, Physics Letters A, 77 (1980), 37-38. doi: 10.1016/0375-9601(80)90627-1. Google Scholar

[10]

J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1980), 305-323. doi: 10.1016/0167-2789(83)90134-3. Google Scholar

[11]

J. E. Marsden and R. Abraham, Foundations of Mechanics, 2nd edition, Addison-Wesley Publishing Co., Redwood City, CA., 1978, URL http://resolver.caltech.edu/CaltechBOOK:1987.001.Google Scholar

[12]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314. Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer New York, New York, NY, 1999. doi: 10.1007/978-0-387-21792-5. Google Scholar

[14]

R. I. McLachlan, Spatial discretization of partial differential equations with integrals, IMA Journal of Numerical Analysis, 23 (2003), 645-664. doi: 10.1093/imanum/23.4.645. Google Scholar

[15]

R. I. McLachlanK. Modin and O. Verdier, Collective symplectic integrators, Nonlinearity, 27 (2014), 1525-1542. doi: 10.1088/0951-7715/27/6/1525. Google Scholar

[16]

I. Vaisman, Symplectic realizations of poisson manifolds, Lectures on the Geometry of Poisson Manifolds, 1994,115–133. doi: 10.1007/978-3-0348-8495-2_9. Google Scholar

[17]

C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 030, 22 pp. doi: 10.3842/SIGMA.2008.030. Google Scholar

show all references

References:
[1]

L. Brugnano, M. Calvo, J. Montijano and L. Rández, Energy-preserving methods for Poisson systems, Journal of Computational and Applied Mathematics, 236 (2012), 3890–3904, 40 years of numerical analysis: "Is the discrete world an approximation of the continuous one or is it the other way around". doi: 10.1016/j.cam.2012.02.033. Google Scholar

[2]

A. Chern, F. Knöppel, U. Pinkall, P. Schröder and S. Weiẞmann, Schrödinger's smoke, ACM Transactions on Graphics (TOG), 35 (2016), 77. doi: 10.1145/2897824.2925868. Google Scholar

[3]

D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT Numerical Mathematics, 51 (2011), 91-101. doi: 10.1007/s10543-011-0310-z. Google Scholar

[4]

M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 305205, 14pp. doi: 10.1088/1751-8113/44/30/305205. Google Scholar

[5]

D. M. de Diego, Lie-Poisson integrators, preprint, arXiv: 1803.01427, URL https://arXiv.org/abs/1803.01427.Google Scholar

[6]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition. Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8. Google Scholar

[7]

B. Khesin and R. Wendt, Infinite-dimensional lie groups: Their geometry, orbits, and dynamical systems, The Geometry of Infinite-Dimensional Groups, 2009, 47–153. doi: 10.1007/978-3-540-77263-7_2. Google Scholar

[8]

A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, vol. 53, AMS, 1997. doi: 10.1090/surv/053. Google Scholar

[9]

E. Kuznetsov and A. Mikhailov, On the topological meaning of canonical Clebsch variables, Physics Letters A, 77 (1980), 37-38. doi: 10.1016/0375-9601(80)90627-1. Google Scholar

[10]

J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1980), 305-323. doi: 10.1016/0167-2789(83)90134-3. Google Scholar

[11]

J. E. Marsden and R. Abraham, Foundations of Mechanics, 2nd edition, Addison-Wesley Publishing Co., Redwood City, CA., 1978, URL http://resolver.caltech.edu/CaltechBOOK:1987.001.Google Scholar

[12]

J. E. MarsdenS. Pekarsky and S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314. Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Springer New York, New York, NY, 1999. doi: 10.1007/978-0-387-21792-5. Google Scholar

[14]

R. I. McLachlan, Spatial discretization of partial differential equations with integrals, IMA Journal of Numerical Analysis, 23 (2003), 645-664. doi: 10.1093/imanum/23.4.645. Google Scholar

[15]

R. I. McLachlanK. Modin and O. Verdier, Collective symplectic integrators, Nonlinearity, 27 (2014), 1525-1542. doi: 10.1088/0951-7715/27/6/1525. Google Scholar

[16]

I. Vaisman, Symplectic realizations of poisson manifolds, Lectures on the Geometry of Poisson Manifolds, 1994,115–133. doi: 10.1007/978-3-0348-8495-2_9. Google Scholar

[17]

C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 030, 22 pp. doi: 10.3842/SIGMA.2008.030. Google Scholar

Figure 1.  Uniform periodic grids on $ S^1 \cong \mathbb{R}/L\mathbb{Z} $, $ L>0 $
Figure 2.  Order-two convergence for the travelling wave solution of the extended Burgers' equation outlined in section 6.2. The plots correspond to the conventional solution (○) and the collective solution (△) and an order-two reference line (). The error is calculated after 512 timesteps, with $ L = 8 $, $ \Delta t = 2^{-14} $ and $ \Delta x = L/2^{k} $ for $ k = 1,2,3 $ and $ 4 $
Figure 3.  Inviscid Burgers' equation solutions of the conventional method () and collective method (). The grid parameters are $ n_x = 64 $, $ \Delta x = 0.125 $, $ L = 8 $ and $ \Delta t = 2^{-12} $. A shock forms at about $ t = 0.4 $
Figure 4.  The errors corresponding to the conventional () and collective () methods for the inviscid Burgers' equation and $ \mathcal{O}(t^2) $ reference lines ()
Figure 5.  Travelling wave solutions of the perturbed Burgers' equation (top row) and the positive Fourier modes (bottom row) at $ t = 109 $ (left column), $ t = 218 $ (middle column) and $ t = 437 $ (right column). The plots correspond to the conventional method (), collective method () and the exact travelling wave solution (). The grid parameters are $ n_x = 16 $, $ \Delta x = 0.5 $, $ L = 8 $ and $ \Delta t = 2^{-6} $
Figure 6.  The errors corresponding to the conventional () and collective () methods for the travelling wave experiment. The reference lines () are $ \mathcal{O}(t) $ in figures (a) and (b) and exponential in figure (c)
Figure 7.  Periodic bump solutions of the extended Burgers' equation (top row) and the positive Fourier modes (bottom row) at $ t = 10 $ (left column), $ t = 100 $ (middle column) and $ t = 1000 $ (right column). The plots correspond to the conventional method () and the collective method (). The grid parameters are $ n_x = 32 $, $ \Delta x = 0.25 $, $ L = 8 $ and $ \Delta t = 2^{-8} $
Figure 8.  The errors corresponding to the conventional () and collective () methods for the periodic bump example. The reference line () in figure (a) is $ \mathcal{O}(t) $
Table 1.  Overview of the setting
Continuous system Spatially discretised system
Collective Hamiltonian system on an infinite-dimensional symplectic vector space in Clebsch variables $ q_t = \frac{\delta \bar H}{\delta p}, \quad p_t = -\frac{\delta \bar H}{\delta q}. $ Exact solutions preserve the symplectic structure, the Hamiltonian $ \bar H=H\circ J $, all quantities related to the Casimirs of the original PDE and the fibres of the Clebsch map $ J(q,p)=u $. Canonical Hamiltonian ODEs in $ 2N $ variables $ \hat q_t = \nabla_{\hat p} \hat {\bar H}, \quad \hat p_t = - \nabla_{\hat q} \hat {\bar H}. $ The exact flow preserves the symplectic structure and the Hamiltonian $ \hat {\bar H} $. Time-integration with the midpoint rule is symplectic.
Original PDE, interpreted as a Lie-Poisson equation $ u_t = \mathrm{ad}^\ast_{\frac {\delta H}{\delta u}}u. $ Exact solutions preserve the Poisson structure, the Hamiltonian $ H $ and all Casimirs. Non-Hamiltonian ODEs in $ N $ variables $ \hat u_t = K(\hat u) \nabla_{\hat u} \hat H, \qquad K^T=-K. $ Exact solutions conserve $ \hat H $. Time-integration with the midpoint rule is not symplectic.
Continuous system Spatially discretised system
Collective Hamiltonian system on an infinite-dimensional symplectic vector space in Clebsch variables $ q_t = \frac{\delta \bar H}{\delta p}, \quad p_t = -\frac{\delta \bar H}{\delta q}. $ Exact solutions preserve the symplectic structure, the Hamiltonian $ \bar H=H\circ J $, all quantities related to the Casimirs of the original PDE and the fibres of the Clebsch map $ J(q,p)=u $. Canonical Hamiltonian ODEs in $ 2N $ variables $ \hat q_t = \nabla_{\hat p} \hat {\bar H}, \quad \hat p_t = - \nabla_{\hat q} \hat {\bar H}. $ The exact flow preserves the symplectic structure and the Hamiltonian $ \hat {\bar H} $. Time-integration with the midpoint rule is symplectic.
Original PDE, interpreted as a Lie-Poisson equation $ u_t = \mathrm{ad}^\ast_{\frac {\delta H}{\delta u}}u. $ Exact solutions preserve the Poisson structure, the Hamiltonian $ H $ and all Casimirs. Non-Hamiltonian ODEs in $ N $ variables $ \hat u_t = K(\hat u) \nabla_{\hat u} \hat H, \qquad K^T=-K. $ Exact solutions conserve $ \hat H $. Time-integration with the midpoint rule is not symplectic.
[1]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[2]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[3]

Luca Lussardi. On a Poisson's equation arising from magnetism. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 769-772. doi: 10.3934/dcdss.2015.8.769

[4]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[5]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[6]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[7]

Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341

[8]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[9]

Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

[10]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

[11]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[12]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

[13]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[14]

Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951

[15]

Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847

[16]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[17]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[18]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[19]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[20]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]