January  2016, 3(1): 93-112. doi: 10.3934/jcd.2016005

On the computation of attractors for delay differential equations

1. 

Institute for Mathematics, University of Paderborn, D-33095 Paderborn

2. 

Department of Mathematics, Paderborn University, 33095 Paderborn, Germany, Germany

Received  September 2015 Revised  March 2016 Published  October 2016

In this work we present a novel framework for the computation of finite dimensional invariant sets of infinite dimensional dynamical systems. It extends a classical subdivision technique [7] for the computation of such objects of finite dimensional systems to the infinite dimensional case by utilizing results on embedding techniques for infinite dimensional systems. We show how to implement this approach for the analysis of delay differential equations and illustrate the feasibility of our implementation by computing invariant sets for three different delay differential equations.
Citation: Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005
References:
[1]

A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos,, Physica D: Nonlinear Phenomena, 14 (1985), 327. doi: 10.1016/0167-2789(85)90093-4. Google Scholar

[2]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2013). Google Scholar

[3]

C. Chicone, Inertial and slow manifolds for delay equations with small delays,, Journal of Differential Equations, 190 (2003), 364. doi: 10.1016/S0022-0396(02)00148-1. Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, (1989). doi: 10.1007/978-1-4612-3506-4. Google Scholar

[5]

J. D. Crawford and S. Omohundro, On the global structure of period doubling flows,, Physica D: Nonlinear Phenomena, 13 (1984), 161. doi: 10.1016/0167-2789(84)90275-6. Google Scholar

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145. Google Scholar

[7]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293. doi: 10.1007/s002110050240. Google Scholar

[8]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491. doi: 10.1137/S0036142996313002. Google Scholar

[9]

M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region,, Physical Review Letters, 94 (2005). doi: 10.1103/PhysRevLett.94.231102. Google Scholar

[10]

R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays,, SIAM Review, 10 (1968), 329. doi: 10.1137/1010058. Google Scholar

[11]

J. Dugundji, An extension of Tietze's theorem,, Pacific J. Math., 1 (1951), 353. doi: 10.2140/pjm.1951.1.353. Google Scholar

[12]

N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory,, Interscience Publishers, (1957). Google Scholar

[13]

J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system,, Physica D, 4 (1982), 366. doi: 10.1016/0167-2789(82)90042-2. Google Scholar

[14]

C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433. doi: 10.1016/0375-9601(88)90295-2. Google Scholar

[15]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839. doi: 10.1137/S106482750238911X. Google Scholar

[16]

G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring,, Ocean Modelling, 52 (2012), 69. Google Scholar

[17]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D: Nonlinear Phenomena, 239 (2010), 1527. doi: 10.1016/j.physd.2010.03.009. Google Scholar

[18]

C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes,, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711. doi: 10.1137/040608295. Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied mathematical sciences, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[20]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces,, Nonlinearity, 12 (1999), 1263. doi: 10.1088/0951-7715/12/5/303. Google Scholar

[21]

B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768. doi: 10.1063/1.166450. Google Scholar

[22]

I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem,, Physica D: Nonlinear Phenomena, 196 (2004), 45. doi: 10.1016/j.physd.2004.04.004. Google Scholar

[23]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287. doi: 10.1126/science.267326. Google Scholar

[24]

I. Mezić and A. Banaszuk, Comparison of systems with complex behavior,, Physica D: Nonlinear Phenomena, 197 (2004), 101. doi: 10.1016/j.physd.2004.06.015. Google Scholar

[25]

J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems,, Nonlinearity, 18 (2005), 2135. doi: 10.1088/0951-7715/18/5/013. Google Scholar

[26]

T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems,, SIAM J. Applied Dynamical Systems, 8 (2009), 1116. doi: 10.1137/080718772. Google Scholar

[27]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Stat. Phys., 65 (1991), 579. doi: 10.1007/BF01053745. Google Scholar

[28]

C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems,, in Ergodic Theory, (2001), 191. Google Scholar

[29]

J. Stark, Delay embeddings for forced systems. I. Deterministic forcing,, Journal of Nonlinear Science, 9 (1999), 255. doi: 10.1007/s003329900072. Google Scholar

[30]

F. Takens, Detecting strange attractors in turbulence,, Springer Lecture Notes in Mathematics, 898 (1981), 366. Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997), 978. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[32]

C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold,, Journal of Scientific Computing, 39 (2009), 167. doi: 10.1007/s10915-008-9256-y. Google Scholar

[33]

S. Willard, General Topology,, Addison-Wesley, (1970). Google Scholar

show all references

References:
[1]

A. Arneodo, P. H. Coullet, E. A. Spiegel and C. Tresser, Asymptotic chaos,, Physica D: Nonlinear Phenomena, 14 (1985), 327. doi: 10.1016/0167-2789(85)90093-4. Google Scholar

[2]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2013). Google Scholar

[3]

C. Chicone, Inertial and slow manifolds for delay equations with small delays,, Journal of Differential Equations, 190 (2003), 364. doi: 10.1016/S0022-0396(02)00148-1. Google Scholar

[4]

P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations,, Springer-Verlag, (1989). doi: 10.1007/978-1-4612-3506-4. Google Scholar

[5]

J. D. Crawford and S. Omohundro, On the global structure of period doubling flows,, Physica D: Nonlinear Phenomena, 13 (1984), 161. doi: 10.1016/0167-2789(84)90275-6. Google Scholar

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145. Google Scholar

[7]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numerische Mathematik, 75 (1997), 293. doi: 10.1007/s002110050240. Google Scholar

[8]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491. doi: 10.1137/S0036142996313002. Google Scholar

[9]

M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region,, Physical Review Letters, 94 (2005). doi: 10.1103/PhysRevLett.94.231102. Google Scholar

[10]

R. D. Driver, On Ryabov's asymptotic characterization of the solutions of quasi-linear differential equations with small delays,, SIAM Review, 10 (1968), 329. doi: 10.1137/1010058. Google Scholar

[11]

J. Dugundji, An extension of Tietze's theorem,, Pacific J. Math., 1 (1951), 353. doi: 10.2140/pjm.1951.1.353. Google Scholar

[12]

N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory,, Interscience Publishers, (1957). Google Scholar

[13]

J. D. Farmer, Chaotic attractors of an infinite-dimensional dynamical system,, Physica D, 4 (1982), 366. doi: 10.1016/0167-2789(82)90042-2. Google Scholar

[14]

C. Foias, M. Jolly, I. Kevrekidis, G. Sell and E. Titi, On the computation of inertial manifolds,, Physics Letters A, 131 (1988), 433. doi: 10.1016/0375-9601(88)90295-2. Google Scholar

[15]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839. doi: 10.1137/S106482750238911X. Google Scholar

[16]

G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring,, Ocean Modelling, 52 (2012), 69. Google Scholar

[17]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D: Nonlinear Phenomena, 239 (2010), 1527. doi: 10.1016/j.physd.2010.03.009. Google Scholar

[18]

C. W. Gear, T. J. Kaper, I. G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes,, SIAM Journal on Applied Dynamical Systems, 4 (2005), 711. doi: 10.1137/040608295. Google Scholar

[19]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Applied mathematical sciences, (1993). doi: 10.1007/978-1-4612-4342-7. Google Scholar

[20]

B. R. Hunt and V. Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces,, Nonlinearity, 12 (1999), 1263. doi: 10.1088/0951-7715/12/5/303. Google Scholar

[21]

B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9 (1999), 768. doi: 10.1063/1.166450. Google Scholar

[22]

I. Kukavica and J. C. Robinson, Distinguishing smooth functions by a finite number of point values, and a version of the Takens embedding theorem,, Physica D: Nonlinear Phenomena, 196 (2004), 45. doi: 10.1016/j.physd.2004.04.004. Google Scholar

[23]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287. doi: 10.1126/science.267326. Google Scholar

[24]

I. Mezić and A. Banaszuk, Comparison of systems with complex behavior,, Physica D: Nonlinear Phenomena, 197 (2004), 101. doi: 10.1016/j.physd.2004.06.015. Google Scholar

[25]

J. C. Robinson, A topological delay embedding theorem for infinite-dimensional dynamical systems,, Nonlinearity, 18 (2005), 2135. doi: 10.1088/0951-7715/18/5/013. Google Scholar

[26]

T. Sahai and A. Vladimirsky, Numerical methods for approximating invariant manifolds of delayed systems,, SIAM J. Applied Dynamical Systems, 8 (2009), 1116. doi: 10.1137/080718772. Google Scholar

[27]

T. Sauer, J. A. Yorke and M. Casdagli, Embedology,, J. Stat. Phys., 65 (1991), 579. doi: 10.1007/BF01053745. Google Scholar

[28]

C. Schütte, W. Huisinga and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems,, in Ergodic Theory, (2001), 191. Google Scholar

[29]

J. Stark, Delay embeddings for forced systems. I. Deterministic forcing,, Journal of Nonlinear Science, 9 (1999), 255. doi: 10.1007/s003329900072. Google Scholar

[30]

F. Takens, Detecting strange attractors in turbulence,, Springer Lecture Notes in Mathematics, 898 (1981), 366. Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997), 978. doi: 10.1007/978-1-4612-0645-3. Google Scholar

[32]

C. Vandekerckhove, I. Kevrekidis and D. Roose, An efficient Newton-Krylov implementation of the constrained runs scheme for initializing on a slow manifold,, Journal of Scientific Computing, 39 (2009), 167. doi: 10.1007/s10915-008-9256-y. Google Scholar

[33]

S. Willard, General Topology,, Addison-Wesley, (1970). Google Scholar

[1]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[2]

Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177

[3]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[4]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[5]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[6]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[7]

Martin Schechter. Monotonicity methods for infinite dimensional sandwich systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 455-468. doi: 10.3934/dcds.2010.28.455

[8]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[9]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[10]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[11]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[12]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[13]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[14]

Luca Bisconti, Marco Spadini. On the set of harmonic solutions of a class of perturbed coupled and nonautonomous differential equations on manifolds. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1471-1492. doi: 10.3934/cpaa.2017070

[15]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[16]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[17]

María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : ⅰ-ⅳ. doi: 10.3934/dcdsb.201705i

[18]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[19]

Xavier Cabré, Amadeu Delshams, Marian Gidea, Chongchun Zeng. Preface of Llavefest: A broad perspective on finite and infinite dimensional dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : ⅰ-ⅲ. doi: 10.3934/dcds.201812i

[20]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

[Back to Top]