June  2014, 1(2): 213-232. doi: 10.3934/jcd.2014.1.213

Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model

1. 

Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway

2. 

MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, Szeged, Aradi vertanuk tere 1, H-6720, Hungary

Received  April 2013 Revised  July 2013 Published  December 2014

We consider the global asymptotic stability of the trivial fixed point of the difference equation $x_{n+1}=m x_n-\alpha \varphi(x_{n-1})$, where $(\alpha,m) \in \mathbb{R}^2$ and $\varphi$ is a real function satisfying the discrete Yorke condition: $\min\{0,x\} \leq \varphi(x) \leq \max\{0,x\}$ for all $x\in \mathbb{R}$. If $\varphi$ is bounded then $(\alpha,m) \in [|m|-1,1] \times [-1,1]$, $(\alpha,m) \neq (0,-1), (0,1)$ is necessary for the global stability of $0$. We prove that if $\varphi(x) \equiv \tanh(x)$, then this condition is sufficient as well.
Citation: Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213
References:
[1]

G. Alefeld and J. Herzberger, Introduction to Interval Computations,, Academic Press, (1983). Google Scholar

[2]

F. A. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional Ricker map,, J. Difference Equ. Appl., 19 (2013), 2043. doi: 10.1080/10236198.2013.804916. Google Scholar

[3]

Y. Cao, Uniqueness of periodic solution for differential delay equations,, J. Differential Equations, 128 (1996), 46. doi: 10.1006/jdeq.1996.0088. Google Scholar

[4]

W.-H. Chen, X. Lu and D.-Y. Liang, Global exponential stability for discrete-time neural networks with variable delays,, Physics Letters A, 358 (2006), 186. doi: 10.1016/j.physleta.2006.05.014. Google Scholar

[5]

C. W. Clark, A delayed-recruitment model of population dynamics, with an application to baleen whale populations,, J. Math. Biol., 3 (1976), 381. doi: 10.1007/BF00275067. Google Scholar

[6]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numer. Math., 75 (1997), 293. doi: 10.1007/s002110050240. Google Scholar

[7]

M. Dellnitz, A. Hohmann, O. Junge and M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221. doi: 10.1063/1.166223. Google Scholar

[8]

H. A. El-Morshedy and E. Liz, Convergence to equilibria in discrete population models,, J. Difference Equ. Appl., 11 (2005), 117. doi: 10.1080/10236190512331319334. Google Scholar

[9]

Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic,, Nonlinearity, 15 (2002), 1759. doi: 10.1088/0951-7715/15/6/304. Google Scholar

[10]

S. Guo, L. Huang and L. Wang, Exponential stability of discrete-time Hopfield neural networks,, Comput. Math. Appl., 47 (2004), 1249. doi: 10.1016/S0898-1221(04)90119-8. Google Scholar

[11]

S. Haykin, Neural Networks: A Comprehensive Foundation,, Prentice-Hall, (1999). Google Scholar

[12]

V. J. López, A counterexample on global attractivity for Clark's equation,, Proceedings of the Workshop Future Directions in Difference Equations, 69 (2011), 97. Google Scholar

[13]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993). doi: 10.1007/978-94-017-1703-8. Google Scholar

[14]

T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,, Electron. J. Qual. Theory Differ. Equ., (1999), 1. Google Scholar

[15]

T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,, in Topics in Functional Differential and Difference Equations, 29 (2001), 267. Google Scholar

[16]

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,, J. Dynam. Differential Equations, 13 (2001), 1. doi: 10.1023/A:1009091930589. Google Scholar

[17]

T. Krisztin, H.-O. Walther and J. Wu, Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,, Fields Institute Monographs, (1999). Google Scholar

[18]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edition,, Applied Mathematical Sciences, (2004). doi: 10.1007/978-1-4757-3978-7. Google Scholar

[19]

E. Liz, Stability of non-autonomous difference equations: Simple ideas leading to useful results,, J. Difference Equ. Appl., 17 (2011), 203. doi: 10.1080/10236198.2010.549007. Google Scholar

[20]

S. Luzzatto and P. Pilarczyk, Finite resolution dynamics,, Found. Comput. Math., 11 (2011), 211. doi: 10.1007/s10208-010-9083-z. Google Scholar

[21]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17. doi: 10.1016/S0096-3003(01)00299-5. Google Scholar

[22]

R. E. Moore, Methods and Applications of Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (1979). doi: 10.1137/1.9781611970906. Google Scholar

[23]

R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (2009). doi: 10.1137/1.9780898717716. Google Scholar

[24]

N. S. Nedialkov, K. R. Jackson and G. F. Corliss, Validated solutions of initial value problems for ordinary differential equations,, Appl. Math. Comput., 105 (1999), 21. doi: 10.1016/S0096-3003(98)10083-8. Google Scholar

[25]

O. I. Nenya, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 9 (2006), 513. doi: 10.1007/s11072-006-0058-6. Google Scholar

[26]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On sharp conditions for the global stability of a difference equation satisfying the Yorke condition,, Ukrainian Math. J., 60 (2008), 78. doi: 10.1007/s11253-008-0043-6. Google Scholar

[27]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 7 (2004), 473. doi: 10.1007/s11072-005-0027-5. Google Scholar

[28]

J. G. Siek, L.-Q. Lee and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual,, Addison-Wesley, (2002). Google Scholar

[29]

R. Tarjan, Depth-first search and linear graph algorithms,, SIAM J. Comput., 1 (1972), 146. doi: 10.1137/0201010. Google Scholar

[30]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53. doi: 10.1007/s002080010018. Google Scholar

[31]

W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations,, Princeton University Press, (2011). Google Scholar

[32]

D. Wilczak, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the Kuznetsov system,, SIAM J. Appl. Dyn. Syst., 9 (2010), 1263. doi: 10.1137/100795176. Google Scholar

[33]

J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay,, de Gruyter Series in Nonlinear Analysis and Applications, (2001). doi: 10.1515/9783110879971. Google Scholar

[34]

H. Xu, Y. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays,, Appl. Math. Comput., 217 (2010), 537. doi: 10.1016/j.amc.2010.05.087. Google Scholar

[35]

Q. Zhang, X. Wei and J. Xu, On global exponential stability of discrete-time Hopfield neural networks with variable delays,, Discrete Dyn. Nat. Soc., 2007 (2007). doi: 10.1155/2007/67675. Google Scholar

[36]

, =, (). Google Scholar

[37]

Computer-Aided Proofs in Analysis group, CAPA,, , (). Google Scholar

[38]

Computer Assisted Proofs in Dynamics group, CAPD Library,, , (). Google Scholar

[39]

National Information Infrastructure Development Institute, NIIF,, , (). Google Scholar

show all references

References:
[1]

G. Alefeld and J. Herzberger, Introduction to Interval Computations,, Academic Press, (1983). Google Scholar

[2]

F. A. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional Ricker map,, J. Difference Equ. Appl., 19 (2013), 2043. doi: 10.1080/10236198.2013.804916. Google Scholar

[3]

Y. Cao, Uniqueness of periodic solution for differential delay equations,, J. Differential Equations, 128 (1996), 46. doi: 10.1006/jdeq.1996.0088. Google Scholar

[4]

W.-H. Chen, X. Lu and D.-Y. Liang, Global exponential stability for discrete-time neural networks with variable delays,, Physics Letters A, 358 (2006), 186. doi: 10.1016/j.physleta.2006.05.014. Google Scholar

[5]

C. W. Clark, A delayed-recruitment model of population dynamics, with an application to baleen whale populations,, J. Math. Biol., 3 (1976), 381. doi: 10.1007/BF00275067. Google Scholar

[6]

M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors,, Numer. Math., 75 (1997), 293. doi: 10.1007/s002110050240. Google Scholar

[7]

M. Dellnitz, A. Hohmann, O. Junge and M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221. doi: 10.1063/1.166223. Google Scholar

[8]

H. A. El-Morshedy and E. Liz, Convergence to equilibria in discrete population models,, J. Difference Equ. Appl., 11 (2005), 117. doi: 10.1080/10236190512331319334. Google Scholar

[9]

Z. Galias, Rigorous investigation of the Ikeda map by means of interval arithmetic,, Nonlinearity, 15 (2002), 1759. doi: 10.1088/0951-7715/15/6/304. Google Scholar

[10]

S. Guo, L. Huang and L. Wang, Exponential stability of discrete-time Hopfield neural networks,, Comput. Math. Appl., 47 (2004), 1249. doi: 10.1016/S0898-1221(04)90119-8. Google Scholar

[11]

S. Haykin, Neural Networks: A Comprehensive Foundation,, Prentice-Hall, (1999). Google Scholar

[12]

V. J. López, A counterexample on global attractivity for Clark's equation,, Proceedings of the Workshop Future Directions in Difference Equations, 69 (2011), 97. Google Scholar

[13]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications,, Mathematics and its Applications, (1993). doi: 10.1007/978-94-017-1703-8. Google Scholar

[14]

T. Krisztin, Periodic orbits and the global attractor for delayed monotone negative feedback,, Electron. J. Qual. Theory Differ. Equ., (1999), 1. Google Scholar

[15]

T. Krisztin, Unstable sets of periodic orbits and the global attractor for delayed feedback,, in Topics in Functional Differential and Difference Equations, 29 (2001), 267. Google Scholar

[16]

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor,, J. Dynam. Differential Equations, 13 (2001), 1. doi: 10.1023/A:1009091930589. Google Scholar

[17]

T. Krisztin, H.-O. Walther and J. Wu, Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,, Fields Institute Monographs, (1999). Google Scholar

[18]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd edition,, Applied Mathematical Sciences, (2004). doi: 10.1007/978-1-4757-3978-7. Google Scholar

[19]

E. Liz, Stability of non-autonomous difference equations: Simple ideas leading to useful results,, J. Difference Equ. Appl., 17 (2011), 203. doi: 10.1080/10236198.2010.549007. Google Scholar

[20]

S. Luzzatto and P. Pilarczyk, Finite resolution dynamics,, Found. Comput. Math., 11 (2011), 211. doi: 10.1007/s10208-010-9083-z. Google Scholar

[21]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Appl. Math. Comput., 135 (2003), 17. doi: 10.1016/S0096-3003(01)00299-5. Google Scholar

[22]

R. E. Moore, Methods and Applications of Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (1979). doi: 10.1137/1.9781611970906. Google Scholar

[23]

R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis,, SIAM Soc. for Industrial and Applied Math., (2009). doi: 10.1137/1.9780898717716. Google Scholar

[24]

N. S. Nedialkov, K. R. Jackson and G. F. Corliss, Validated solutions of initial value problems for ordinary differential equations,, Appl. Math. Comput., 105 (1999), 21. doi: 10.1016/S0096-3003(98)10083-8. Google Scholar

[25]

O. I. Nenya, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 9 (2006), 513. doi: 10.1007/s11072-006-0058-6. Google Scholar

[26]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On sharp conditions for the global stability of a difference equation satisfying the Yorke condition,, Ukrainian Math. J., 60 (2008), 78. doi: 10.1007/s11253-008-0043-6. Google Scholar

[27]

O. I. Nenya, V. I. Tkachenko and S. I. Trofimchuk, On the global stability of one nonlinear difference equation,, Nonlinear Oscil., 7 (2004), 473. doi: 10.1007/s11072-005-0027-5. Google Scholar

[28]

J. G. Siek, L.-Q. Lee and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Manual,, Addison-Wesley, (2002). Google Scholar

[29]

R. Tarjan, Depth-first search and linear graph algorithms,, SIAM J. Comput., 1 (1972), 146. doi: 10.1137/0201010. Google Scholar

[30]

W. Tucker, A rigorous ODE solver and Smale's 14th problem,, Found. Comput. Math., 2 (2002), 53. doi: 10.1007/s002080010018. Google Scholar

[31]

W. Tucker, Validated Numerics: A Short Introduction to Rigorous Computations,, Princeton University Press, (2011). Google Scholar

[32]

D. Wilczak, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the Kuznetsov system,, SIAM J. Appl. Dyn. Syst., 9 (2010), 1263. doi: 10.1137/100795176. Google Scholar

[33]

J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay,, de Gruyter Series in Nonlinear Analysis and Applications, (2001). doi: 10.1515/9783110879971. Google Scholar

[34]

H. Xu, Y. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays,, Appl. Math. Comput., 217 (2010), 537. doi: 10.1016/j.amc.2010.05.087. Google Scholar

[35]

Q. Zhang, X. Wei and J. Xu, On global exponential stability of discrete-time Hopfield neural networks with variable delays,, Discrete Dyn. Nat. Soc., 2007 (2007). doi: 10.1155/2007/67675. Google Scholar

[36]

, =, (). Google Scholar

[37]

Computer-Aided Proofs in Analysis group, CAPA,, , (). Google Scholar

[38]

Computer Assisted Proofs in Dynamics group, CAPD Library,, , (). Google Scholar

[39]

National Information Infrastructure Development Institute, NIIF,, , (). Google Scholar

[1]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019

[4]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[5]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[6]

Maxime Breden, Laurent Desvillettes, Jean-Philippe Lessard. Rigorous numerics for nonlinear operators with tridiagonal dominant linear part. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4765-4789. doi: 10.3934/dcds.2015.35.4765

[7]

Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193

[8]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[9]

Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693

[10]

Wenguo Shen. Unilateral global interval bifurcation for Kirchhoff type problems and its applications. Communications on Pure & Applied Analysis, 2018, 17 (1) : 21-37. doi: 10.3934/cpaa.2018002

[11]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[12]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[13]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[14]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[15]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[16]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[17]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[18]

Graciela Canziani, Rosana Ferrati, Claudia Marinelli, Federico Dukatz. Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Mathematical Biosciences & Engineering, 2008, 5 (4) : 691-711. doi: 10.3934/mbe.2008.5.691

[19]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[20]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]