August  2019, 13(4): 827-862. doi: 10.3934/ipi.2019038

Nash strategies for the inverse inclusion Cauchy-Stokes problem

1. 

Université Cȏte d'Azur, Inria, CNRS, LJAD, UMR 7351, Parc Valrose, Nice 06108, France

2. 

Université de Tunis El Manar, Ecole Nationale d'Ingénieurs de Tunis, LAMSIN, BP 37, 1002 Tunis Belvedere, Tunisia

* Corresponding author: A. Habbal

Received  October 2018 Revised  March 2019 Published  May 2019

We introduce a new algorithm to solve the problem of detecting unknown cavities immersed in a stationary viscous fluid, using partial boundary measurements. The considered fluid obeys a steady Stokes regime, the cavities are inclusions and the boundary measurements are a single compatible pair of Dirichlet and Neumann data, available only on a partial accessible part of the whole boundary. This inverse inclusion Cauchy-Stokes problem is ill-posed for both the cavities and missing data reconstructions, and designing stable and efficient algorithms is not straightforward. We reformulate the problem as a three-player Nash game. Thanks to an identifiability result derived for the Cauchy-Stokes inclusion problem, it is enough to set up two Stokes boundary value problems, then use them as state equations. The Nash game is then set between 3 players, the two first targeting the data completion while the third one targets the inclusion detection. We used a level-set approach to get rid of the tricky control dependence of functional spaces, and we provided the third player with the level-set function as strategy, with a cost functional of Kohn-Vogelius type. We propose an original algorithm, which we implemented using Freefem++. We present 2D numerical experiments for three different test-cases.The obtained results corroborate the efficiency of our 3-player Nash game approach to solve parameter or shape identification for Cauchy problems.

Citation: Abderrahmane Habbal, Moez Kallel, Marwa Ouni. Nash strategies for the inverse inclusion Cauchy-Stokes problem. Inverse Problems & Imaging, 2019, 13 (4) : 827-862. doi: 10.3934/ipi.2019038
References:
[1]

R. AboulaichA. Ben Abda and M. Kallel, A control type method for solving the cauchy-stokes problem, Applied Mathematical Modelling, 37 (2013), 4295-4304. doi: 10.1016/j.apm.2012.09.014. Google Scholar

[2]

G. AlessandriniL. RondiE. Rosset and S. Vessella, The stability for the cauchy problem for elliptic equations, Inverse problems, 25 (2009), 123004. Google Scholar

[3]

G. AllaireF. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of computational physics, 194 (2004), 363-393. doi: 10.1016/j.jcp.2003.09.032. Google Scholar

[4]

C. AlvarezC. ConcaL. FrizO. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003. Google Scholar

[5]

C. AlvesR. Kress and A. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional stokes equations, Journal of Inverse and Ill-posed Problems Jiip, 15 (2007), 461-481. doi: 10.1515/jiip.2007.026. Google Scholar

[6]

S. Andrieux and A. Ben Abda, The reciprocity gap: A general concept for flaws identification problems, Mechanics research communications, 20 (1993), 415-420. doi: 10.1016/0093-6413(93)90032-J. Google Scholar

[7]

S. AndrieuxT. Baranger and A. Ben Abda, Solving cauchy problems by minimizing an energy-like functional, Inverse problems, 22 (2006), 115-133. doi: 10.1088/0266-5611/22/1/007. Google Scholar

[8]

H. AttouchJ. Bolte and P. Redont, Alternating proximal algorithms for weakly coupled convex minimization problems. applications to dynamical games and pde's, J. Convex Anal., 15 (2008), 485-506. Google Scholar

[9]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147, Springer Science & Business Media, 2006. Google Scholar

[10]

A. Ballerini, Stable determination of an immersed body in a stationary stokes fluid, Inverse Problems, 26 (2010), 125015(25pp). doi: 10.1088/0266-5611/26/12/125015. Google Scholar

[11]

G. BastayT. JohanssonV. Kozlov and D. Lesnic, An alternating method for the stationary stokes system, ZAMM, 86 (2006), 268-280. doi: 10.1002/zamm.200410238. Google Scholar

[12]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the cauchy problem for laplace's equation, Inverse Problems, 21 (2005), 1087-1104. doi: 10.1088/0266-5611/21/3/018. Google Scholar

[13]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Probl. Imaging, 4 (2010), 351-377. doi: 10.3934/ipi.2010.4.351. Google Scholar

[14]

L. Bourgeois and J. Dardé, The exterior approach to solve the inverse obstacle problem for the stokes system, Inverse Problems and Imaging, 8 (2014), 23-51. doi: 10.3934/ipi.2014.8.23. Google Scholar

[15]

F. CaubetM. Badra and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660. Google Scholar

[16]

F. Caubet, Détection d'un Objet Immergé dans un Fluide, PhD thesis, Université de Pau, 2012.Google Scholar

[17]

F. CaubetC. Conca and M. Godoy, On the detection of several obstacles in 2d stokes flow: Topological sensitivity and combination with shape derivatives, Inverse Problems and Imaging, 10 (2016), 327-367. doi: 10.3934/ipi.2016003. Google Scholar

[18]

F. Caubet, J. Dardé and M. Godoy, On the data completion problem and the inverse obstacle problem with partial cauchy data for laplace's equation, ESAIM: Control, Optimisation and Calculus of Variations, 2017. doi: 10.1051/cocv/2017056. Google Scholar

[19]

R. Chamekh, A. Habbal, M. Kallel and N. Zemzemi, A nash game algorithm for the solution of coupled conductivity identification and data completion in cardiac electrophysiology, Mathematical Modelling of Natural Phenomena, 14 (2019), Art. 201, 15 pp. doi: 10.1051/mmnp/2018059. Google Scholar

[20]

D. Chenais, Optimal design of midsurface of shells: Differentiability proof and sensitivity computation, Applied Mathematics and Optimization, 16 (1987), 93-133. doi: 10.1007/BF01442187. Google Scholar

[21]

A. CimetiereF. DelvareM. Jaoua and F. Pons, Solution of the cauchy problem using iterated tikhonov regularization, Inverse Problems, 17 (2001), 553-570. doi: 10.1088/0266-5611/17/3/313. Google Scholar

[22] P. Constantin and C. Foias, Navier-stokes Equations, University of Chicago Press, 1988. Google Scholar
[23]

X.-B. DuanY.-C. Ma and R. Zhang, Shape-topology optimization of stokes flow via variational level set method, Applied Mathematics and Computation, 202 (2008), 200-209. doi: 10.1016/j.amc.2008.02.014. Google Scholar

[24]

C. Fabre and G. Lebeau, Unique continuation property of solutions of the stokes equation, Communications in Partial Differential Equations, 21 (1996), 573-596. doi: 10.1080/03605309608821198. Google Scholar

[25]

R. Falk and P. Monk, Logarithmic convexity for discrete harmonic functions and the approximation of the cauchy problem for poisson's equation, Mathematics of Computation, 47 (1986), 135-149. doi: 10.2307/2008085. Google Scholar

[26]

P. C. Franzone and E. Magenes, On the inverse potential problem of electrocardiology, Calcolo, 16 (1979), 459-538. doi: 10.1007/BF02576643. Google Scholar

[27]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Science & Business Media, 2011. doi: 10.1007/978-0-387-09620-9. Google Scholar

[28]

A. Habbal and M. Kallel, Neumann-dirichlet nash strategies for the solution of elliptic cauchy problems, SIAM Journal on Control and Optimization, 51 (2013), 4066-4083. doi: 10.1137/120869808. Google Scholar

[29]

J. Hadamard, The Cauchy Problem and the Linear Hyperbolic Partial Differential Equations, Dover, New York, 1953.Google Scholar

[30]

F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265. doi: 10.1515/jnum-2012-0013. Google Scholar

[31]

T. Johansson and D. Lesnic, Reconstruction of a stationary flow from incomplete boundary data using iterative methods, European Journal of Applied Mathematics, 17 (2006), 651-663. doi: 10.1017/S0956792507006791. Google Scholar

[32]

M. KallelM. Moakher and A. Theljani, The cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting, Inverse Problems and Imaging, 9 (2015), 853-874. doi: 10.3934/ipi.2015.9.853. Google Scholar

[33]

S. Katz and C. F. Landefeld (eds.), On the detection, Behaviour and Control of Inclusions in Liquid Metals, Springer US, Boston, MA, 1988,447–466.Google Scholar

[34]

G. KawchukJ. FryerJ. L. JaremkoH. ZengL. Rowe and R. Thompson, Real-time visualization of joint cavitation, PloS one, 10 (2015), e0119470. doi: 10.1371/journal.pone.0119470. Google Scholar

[35]

R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Communications on Pure and Applied Mathematics, 40 (1987), 745-777. doi: 10.1002/cpa.3160400605. Google Scholar

[36]

V. KozlovV. Maz'ya and A. Fomin, An iterative method for solving the cauchy problems for elliptic equations, Comput. Math. Phys., 31 (1991), 45-52. Google Scholar

[37]

S. Li and T. Bașar, Distributed algorithms for the computation of noncooperative equilibria, Automatica, 23 (1987), 523-533. doi: 10.1016/0005-1098(87)90081-1. Google Scholar

[38]

C.-W. LoS.-F. ChenC.-P. Li and P.-C. Lu, Cavitation phenomena in mechanical heart valves: Studied by using a physical impinging rod system, Annals of biomedical engineering, 38 (2010), 3162-3172. doi: 10.1007/s10439-010-0070-y. Google Scholar

[39]

R. MalladiJ. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995), 158-175. doi: 10.1109/34.368173. Google Scholar

[40]

B. Rousselet, Note on the design differentiability of the static response of elastic structures, Journal of Structural Mechanics, 10 (1982), 353-358. doi: 10.1080/03601218208907417. Google Scholar

[41]

F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM: Control, Optimisation and Calculus of Variations, 1 (1996), 17-33. doi: 10.1051/cocv:1996101. Google Scholar

[42]

Y. Son and K. B. Migler, Cavitation of polyethylene during extrusion processing instabilities, Journal of Polymer Science Part B: Polymer Physics, 40 (2002), 2791-2799. doi: 10.1002/polb.10314. Google Scholar

[43]

T. StiegerH. AghaM. SchoenM. G. Mazza and A. Sengupta, Hydrodynamic cavitation in stokes flow of anisotropic fluids, Nature communications, 8 (2017), 15550. doi: 10.1038/ncomms15550. Google Scholar

[44]

M. SussmanP. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational physics, 114 (1994), 146-159. Google Scholar

[45]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343, American Mathematical Soc., 2001. doi: 10.1090/chel/343. Google Scholar

show all references

References:
[1]

R. AboulaichA. Ben Abda and M. Kallel, A control type method for solving the cauchy-stokes problem, Applied Mathematical Modelling, 37 (2013), 4295-4304. doi: 10.1016/j.apm.2012.09.014. Google Scholar

[2]

G. AlessandriniL. RondiE. Rosset and S. Vessella, The stability for the cauchy problem for elliptic equations, Inverse problems, 25 (2009), 123004. Google Scholar

[3]

G. AllaireF. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of computational physics, 194 (2004), 363-393. doi: 10.1016/j.jcp.2003.09.032. Google Scholar

[4]

C. AlvarezC. ConcaL. FrizO. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003. Google Scholar

[5]

C. AlvesR. Kress and A. Silvestre, Integral equations for an inverse boundary value problem for the two-dimensional stokes equations, Journal of Inverse and Ill-posed Problems Jiip, 15 (2007), 461-481. doi: 10.1515/jiip.2007.026. Google Scholar

[6]

S. Andrieux and A. Ben Abda, The reciprocity gap: A general concept for flaws identification problems, Mechanics research communications, 20 (1993), 415-420. doi: 10.1016/0093-6413(93)90032-J. Google Scholar

[7]

S. AndrieuxT. Baranger and A. Ben Abda, Solving cauchy problems by minimizing an energy-like functional, Inverse problems, 22 (2006), 115-133. doi: 10.1088/0266-5611/22/1/007. Google Scholar

[8]

H. AttouchJ. Bolte and P. Redont, Alternating proximal algorithms for weakly coupled convex minimization problems. applications to dynamical games and pde's, J. Convex Anal., 15 (2008), 485-506. Google Scholar

[9]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147, Springer Science & Business Media, 2006. Google Scholar

[10]

A. Ballerini, Stable determination of an immersed body in a stationary stokes fluid, Inverse Problems, 26 (2010), 125015(25pp). doi: 10.1088/0266-5611/26/12/125015. Google Scholar

[11]

G. BastayT. JohanssonV. Kozlov and D. Lesnic, An alternating method for the stationary stokes system, ZAMM, 86 (2006), 268-280. doi: 10.1002/zamm.200410238. Google Scholar

[12]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the cauchy problem for laplace's equation, Inverse Problems, 21 (2005), 1087-1104. doi: 10.1088/0266-5611/21/3/018. Google Scholar

[13]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Probl. Imaging, 4 (2010), 351-377. doi: 10.3934/ipi.2010.4.351. Google Scholar

[14]

L. Bourgeois and J. Dardé, The exterior approach to solve the inverse obstacle problem for the stokes system, Inverse Problems and Imaging, 8 (2014), 23-51. doi: 10.3934/ipi.2014.8.23. Google Scholar

[15]

F. CaubetM. Badra and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660. Google Scholar

[16]

F. Caubet, Détection d'un Objet Immergé dans un Fluide, PhD thesis, Université de Pau, 2012.Google Scholar

[17]

F. CaubetC. Conca and M. Godoy, On the detection of several obstacles in 2d stokes flow: Topological sensitivity and combination with shape derivatives, Inverse Problems and Imaging, 10 (2016), 327-367. doi: 10.3934/ipi.2016003. Google Scholar

[18]

F. Caubet, J. Dardé and M. Godoy, On the data completion problem and the inverse obstacle problem with partial cauchy data for laplace's equation, ESAIM: Control, Optimisation and Calculus of Variations, 2017. doi: 10.1051/cocv/2017056. Google Scholar

[19]

R. Chamekh, A. Habbal, M. Kallel and N. Zemzemi, A nash game algorithm for the solution of coupled conductivity identification and data completion in cardiac electrophysiology, Mathematical Modelling of Natural Phenomena, 14 (2019), Art. 201, 15 pp. doi: 10.1051/mmnp/2018059. Google Scholar

[20]

D. Chenais, Optimal design of midsurface of shells: Differentiability proof and sensitivity computation, Applied Mathematics and Optimization, 16 (1987), 93-133. doi: 10.1007/BF01442187. Google Scholar

[21]

A. CimetiereF. DelvareM. Jaoua and F. Pons, Solution of the cauchy problem using iterated tikhonov regularization, Inverse Problems, 17 (2001), 553-570. doi: 10.1088/0266-5611/17/3/313. Google Scholar

[22] P. Constantin and C. Foias, Navier-stokes Equations, University of Chicago Press, 1988. Google Scholar
[23]

X.-B. DuanY.-C. Ma and R. Zhang, Shape-topology optimization of stokes flow via variational level set method, Applied Mathematics and Computation, 202 (2008), 200-209. doi: 10.1016/j.amc.2008.02.014. Google Scholar

[24]

C. Fabre and G. Lebeau, Unique continuation property of solutions of the stokes equation, Communications in Partial Differential Equations, 21 (1996), 573-596. doi: 10.1080/03605309608821198. Google Scholar

[25]

R. Falk and P. Monk, Logarithmic convexity for discrete harmonic functions and the approximation of the cauchy problem for poisson's equation, Mathematics of Computation, 47 (1986), 135-149. doi: 10.2307/2008085. Google Scholar

[26]

P. C. Franzone and E. Magenes, On the inverse potential problem of electrocardiology, Calcolo, 16 (1979), 459-538. doi: 10.1007/BF02576643. Google Scholar

[27]

G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Science & Business Media, 2011. doi: 10.1007/978-0-387-09620-9. Google Scholar

[28]

A. Habbal and M. Kallel, Neumann-dirichlet nash strategies for the solution of elliptic cauchy problems, SIAM Journal on Control and Optimization, 51 (2013), 4066-4083. doi: 10.1137/120869808. Google Scholar

[29]

J. Hadamard, The Cauchy Problem and the Linear Hyperbolic Partial Differential Equations, Dover, New York, 1953.Google Scholar

[30]

F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265. doi: 10.1515/jnum-2012-0013. Google Scholar

[31]

T. Johansson and D. Lesnic, Reconstruction of a stationary flow from incomplete boundary data using iterative methods, European Journal of Applied Mathematics, 17 (2006), 651-663. doi: 10.1017/S0956792507006791. Google Scholar

[32]

M. KallelM. Moakher and A. Theljani, The cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting, Inverse Problems and Imaging, 9 (2015), 853-874. doi: 10.3934/ipi.2015.9.853. Google Scholar

[33]

S. Katz and C. F. Landefeld (eds.), On the detection, Behaviour and Control of Inclusions in Liquid Metals, Springer US, Boston, MA, 1988,447–466.Google Scholar

[34]

G. KawchukJ. FryerJ. L. JaremkoH. ZengL. Rowe and R. Thompson, Real-time visualization of joint cavitation, PloS one, 10 (2015), e0119470. doi: 10.1371/journal.pone.0119470. Google Scholar

[35]

R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Communications on Pure and Applied Mathematics, 40 (1987), 745-777. doi: 10.1002/cpa.3160400605. Google Scholar

[36]

V. KozlovV. Maz'ya and A. Fomin, An iterative method for solving the cauchy problems for elliptic equations, Comput. Math. Phys., 31 (1991), 45-52. Google Scholar

[37]

S. Li and T. Bașar, Distributed algorithms for the computation of noncooperative equilibria, Automatica, 23 (1987), 523-533. doi: 10.1016/0005-1098(87)90081-1. Google Scholar

[38]

C.-W. LoS.-F. ChenC.-P. Li and P.-C. Lu, Cavitation phenomena in mechanical heart valves: Studied by using a physical impinging rod system, Annals of biomedical engineering, 38 (2010), 3162-3172. doi: 10.1007/s10439-010-0070-y. Google Scholar

[39]

R. MalladiJ. A. Sethian and B. C. Vemuri, Shape modeling with front propagation: A level set approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995), 158-175. doi: 10.1109/34.368173. Google Scholar

[40]

B. Rousselet, Note on the design differentiability of the static response of elastic structures, Journal of Structural Mechanics, 10 (1982), 353-358. doi: 10.1080/03601218208907417. Google Scholar

[41]

F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM: Control, Optimisation and Calculus of Variations, 1 (1996), 17-33. doi: 10.1051/cocv:1996101. Google Scholar

[42]

Y. Son and K. B. Migler, Cavitation of polyethylene during extrusion processing instabilities, Journal of Polymer Science Part B: Polymer Physics, 40 (2002), 2791-2799. doi: 10.1002/polb.10314. Google Scholar

[43]

T. StiegerH. AghaM. SchoenM. G. Mazza and A. Sengupta, Hydrodynamic cavitation in stokes flow of anisotropic fluids, Nature communications, 8 (2017), 15550. doi: 10.1038/ncomms15550. Google Scholar

[44]

M. SussmanP. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational physics, 114 (1994), 146-159. Google Scholar

[45]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343, American Mathematical Soc., 2001. doi: 10.1090/chel/343. Google Scholar

Figure 1.  An example of the geometric configuration of the problem : the whole domain including cavities is denoted by $ \Omega $. It contains an inclusion $ \omega^* $. The boundary of $ \Omega $ is composed of $ \Gamma_{\!\! c} $, an accessible part where over-specified data are available, and an inaccessible part $ \Gamma_{\!\!i } $ where the data are missing
Figure 2.  Different situations
Figure 5.  Test case A. Reconstruction of the inclusion shape and missing boundary data with noise free Dirichlet data over $ \Gamma_{ c}$. (a) initial contour is $\phi^{(0)}_1$ (b) exact inclusion shape -green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line- first component of the velocity over $ \Gamma_{i }$ (d) exact -line- and computed -dashed line- second component of the velocity over $ \Gamma_{i }$ (e) exact -line- and computed -dashed line- first component of the normal stress over $ \Gamma_{i }$ (f) exact -line- and computed -dashed line- second component of the normal stress over $ \Gamma_{i }$
Figure 6.  Test case A. Reconstruction of the inclusion shape and missing boundary data with noise free Dirichlet data over $ \Gamma_{ c}$.(a) initial contour is $\phi^{(0)}_2$ (b) exact inclusion shape -green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line- first component of the velocity over $ \Gamma_{i }$ (d) exact -line- and computed -dashed line- second component of the velocity over $ \Gamma_{i }$ (e) exact -line- and computed -dashed line- first component of the normal stress over $ \Gamma_{i }$ (f) exact -line- and computed -dashed line- second component of the normal stress over $ \Gamma_{i }$
Figure 7.  Test case A. Reconstruction of the inclusion shape and missing boundary data with noisy Dirichlet data over $ \Gamma_{ c}$ with noise levels $\sigma = \lbrace 1\%, 3\%, 5\% \rbrace$.(a) initial contour is $\phi^{(0)}_2$ (b) exact inclusion shape -green line- and computed ones for different noise levels (c) exact and computed first components of the velocity over $ \Gamma_{i }$ (d) exact and computed second components of the velocity over $ \Gamma_{i }$ (e) exact and computed first components of the normal stress over $ \Gamma_{i }$ (f) exact and computed second components of the normal stress over $ \Gamma_{i }$
Figure 8.  Test case B. Reconstruction of the inclusion shape and missing boundary data with noise free Dirichlet data over $ \Gamma_{ c}$. (a) initial contour is $\phi^{(0)}_2$ (b) exact inclusion shape -green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line- first component of the velocity over $ \Gamma_{i }$ (d) exact -line- and computed -dashed line- second component of the velocity over $ \Gamma_{i }$ (e) exact -line- and computed -dashed line- first component of the normal stress over $ \Gamma_{i }$ (f) exact -line- and computed -dashed line- second component of the normal stress over $ \Gamma_{i }$
Figure 9.  Test case B. Reconstruction of the inclusion shape and missing boundary data with noisy Dirichlet data over $ \Gamma_{ c}$ with levels $\sigma = \lbrace 1\%, 3\%, 5\% \rbrace$.(a) initial contour is $\phi^{(0)}_2$ (b) exact inclusion shape -green line- and computed ones for different noise levels (c) exact and computed first components of the velocity over $ \Gamma_{i }$ (d) exact and computed second components of the velocity over $ \Gamma_{i }$ (e) exact and computed first components of the normal stress over $ \Gamma_{i }$ (f) exact and computed second components of the normal stress over $ \Gamma_{i }$
Figure 10.  Test case C. Reconstruction of the inclusion shape and missing boundary data with noise free Dirichlet data over $ \Gamma_{ c}$. (a) initial contour is $\phi^{(0)}_2$ (b) exact inclusion shape -green line- and computed one - blue dashed- (c) exact -line- and computed -dashed line- first component of the velocity over $ \Gamma_{i }$ (d) exact -line- and computed -dashed line- second component of the velocity over $ \Gamma_{i }$ (e) exact -line- and computed -dashed line- first component of the normal stress over $ \Gamma_{i }$ (f) exact -line- and computed -dashed line- second component of the normal stress over $ \Gamma_{i }$
Figure 11.  Test case C. Reconstruction of the inclusion shape and missing boundary data with noisy Dirichlet data over $ \Gamma_{ c}$ with levels $\sigma = \lbrace 1\%, 3\%, 5\% \rbrace$.(a) initial contour is $\phi^{(0)}_2$ (b) exact inclusion shape -green line- and computed ones for different noise levels (c) exact and computed first components of the velocity over $ \Gamma_{i }$ (d) exact and computed second components of the velocity over $ \Gamma_{i }$ (e) exact and computed first components of the normal stress over $ \Gamma_{i }$ (f) exact and computed second components of the normal stress over $ \Gamma_{i }$
Figure 3.  Test case A. (Left) sensitivity of the reconstruction w.r.t. the mesh size (on abscissae : the number of F.E. nodes on the boundary $\partial \Omega$). (Right) sensitivity of the reconstruction w.r.t. the distance to the inaccessible boundary $ \Gamma_{i }$ (on abscissae : the distance of the center of the circular inclusion from $ \Gamma_{i }$)
Figure 4.  Test case C. (Left) Mesh used for solving the direct problem with the P1bubble-P1 finite element, in order to construct the synthetic data. (Right) Mesh used for solving the coupled inverse problem with P2-P1 finite element, using the P1 bubble-P1 synthetic data
Figure 12.  Assessing Inverse-Crime-Free reconstruction. Test case C. Top: initial and optimal contour. Middle: the two components of the velocity on $\Gamma_i$. Bottom: the two components of the normal stress on $\Gamma_i$ ($err_D = 0.0615048,$ $err_N = 0.124296,$ and $err_O = 0.113156)$
Table 1.  Test-case A. $L^2$ relative errors on missing data on $\Gamma_i$ (on Dirichlet and Neumann data), and the error between the reconstructed and the real shape of the inclusion for various noise levels
Noise level $\sigma=0\%$ $\sigma=1\%$ $\sigma=3\%$ $\sigma=5\%$
$err_D$ 0.010 0.015 0.039 0.063
$err_N$ 0.031 0.033 0.051 0.07
$err_O$ 0.032 0.043 0.066 0.117
Noise level $\sigma=0\%$ $\sigma=1\%$ $\sigma=3\%$ $\sigma=5\%$
$err_D$ 0.010 0.015 0.039 0.063
$err_N$ 0.031 0.033 0.051 0.07
$err_O$ 0.032 0.043 0.066 0.117
Table 2.  Test-case C. $L^2$-errors on missing data over $ \Gamma_{i }$ (on Dirichlet and Neumann data), and the error between the reconstructed and the real shape for various noise levels
Noise level $\sigma=0\%$ $\sigma=1\%$ $\sigma=3\%$ $\sigma=5\%$
$err_D$ 0.042 0.044 0.046 0.08
$err_N$ 0.095 0.1 0.13 0.16
$err_O$ 0.099 0.11 0.13 0.15
Noise level $\sigma=0\%$ $\sigma=1\%$ $\sigma=3\%$ $\sigma=5\%$
$err_D$ 0.042 0.044 0.046 0.08
$err_N$ 0.095 0.1 0.13 0.16
$err_O$ 0.099 0.11 0.13 0.15
Table 3.  Relative errors on the reconstructed missing data and inclusion shape for the Stokes problem (with noise free measurements), compared for a classical Nash algorithm and Algorithm 2: (left) test-case A (right) test-case C
Case A Classical algorithm Algorithm 2
$err_D$ 0.058 0.033
$err_N$ 0.106 0.032
$err_O$ 0.358 0.140
Case C Classical algorithm Algorithm 2
$err_D$ 0.067 0.058
$err_N$ 0.208 0.122
$err_O$ 0.566 0.167
Case A Classical algorithm Algorithm 2
$err_D$ 0.058 0.033
$err_N$ 0.106 0.032
$err_O$ 0.358 0.140
Case C Classical algorithm Algorithm 2
$err_D$ 0.067 0.058
$err_N$ 0.208 0.122
$err_O$ 0.566 0.167
[1]

Moez Kallel, Maher Moakher, Anis Theljani. The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Problems & Imaging, 2015, 9 (3) : 853-874. doi: 10.3934/ipi.2015.9.853

[2]

Roman Chapko, B. Tomas Johansson. Integral equations for biharmonic data completion. Inverse Problems & Imaging, 2019, 13 (5) : 1095-1111. doi: 10.3934/ipi.2019049

[3]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[4]

Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233

[5]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[6]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[7]

Yi Yang, Jianwei Ma, Stanley Osher. Seismic data reconstruction via matrix completion. Inverse Problems & Imaging, 2013, 7 (4) : 1379-1392. doi: 10.3934/ipi.2013.7.1379

[8]

Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127

[9]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[10]

Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 521-546. doi: 10.3934/dcds.1995.1.521

[11]

Angkana Rüland, Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems & Imaging, 2019, 13 (5) : 1023-1044. doi: 10.3934/ipi.2019046

[12]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[13]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[14]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[15]

Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915

[16]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[17]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[18]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[19]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[20]

Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto-optimal NASH equilibria: Deterministic and stochastic models. Journal of Dynamics & Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (63)
  • HTML views (197)
  • Cited by (0)

Other articles
by authors

[Back to Top]